Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 光電與材料科技學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/2306
Title: Visible photoassisted room-temperature oxidizing gas-sensing behavior of Sn2S3 semiconductor sheets through facile thermal annealing
Authors: Liang, Yuan-Chang 
Lung, Tsai-Wen
Wang, Chein-Chung
Keywords: THIN-FILMS;COMPOSITE-MATERIALS;DETECTION ABILITY;LIGHT;ZNO;HETEROSTRUCTURE;NANOCOMPOSITES;NANOWIRES;EVOLUTION
Issue Date: 16-Nov-2016
Publisher: SPRINGER
Journal Volume: 11
Source: NANOSCALE RES LETT
Abstract: 
Well-crystallized Sn2S3 semiconductor thin films with a highly (111)-crystallographic orientation were grown using RF sputtering. The surface morphology of the Sn2S3 thin films exhibited a sheet-like feature. The Sn2S3 crystallites with a sheet-like surface had a sharp periphery with a thickness in a nanoscale size, and the crystallite size ranged from approximately 150 to 300 nm. Postannealing the as-synthesized Sn2S3 thin films further in ambient air at 400 degrees C engendered roughened and oxidized surfaces on the Sn2S3 thin films. Transmission electron microscopy analysis revealed that the surfaces of the Sn2S3 thin films transformed into a SnO2 phase, and well-layered Sn2S3-SnO2 heterostructure thin films were thus formed. The Sn2S3-SnO2 heterostructure thin film exhibited a visible photoassisted room-temperature gas-sensing behavior toward low concentrations of NO2 gases (0.2-2.5 ppm). By contrast, the pure Sn2S3 thin film exhibited an unapparent room-temperature NO2 gas-sensing behavior under illumination. The suitable band alignment at the interface of the Sn2S3-SnO2 heterostructure thin film and rough surface features might explain the visible photoassisted room-temperature NO2 gas-sensing responses of the heterostructure thin film on exposure to NO2 gas at low concentrations in this work.
URI: http://scholars.ntou.edu.tw/handle/123456789/2306
ISSN: 1556-276X
DOI: 10.1186/s11671-016-1720-2
Appears in Collections:光電與材料科技學系
11 SUSTAINABLE CITIES & COMMUNITIES

Show full item record

WEB OF SCIENCETM
Citations

5
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

88
Last Week
0
Last month
2
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback