Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/23110
DC 欄位值語言
dc.contributor.authorTsai, Cheng-Muen_US
dc.contributor.authorHan, Pinen_US
dc.contributor.authorLee, Hsin-Hungen_US
dc.contributor.authorYen, Chih-Taen_US
dc.date.accessioned2022-11-15T00:41:13Z-
dc.date.available2022-11-15T00:41:13Z-
dc.date.issued2022-09-01-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/23110-
dc.description.abstractA design rule prediction is proposed to assist a lens design in this paper. Deep learning was applied in order to predict a lens design rule that is based on a local optimization algorithm. Three separate lens design rules related to the aperture stop and FOV variation were made for the optimization in the two-lens element optical systems whose structural parameters were created randomly. These random lens structures were optimized by using three separate lens design rules that were developed by Zemax OpticStudio API to create a big optimization dataset. All of the optimization results were collected by means of a further deep learning process to determine which optimization rule would be the better choice for lens optimization when given the lens parameters. The model developed via deep learning shows that the prediction has a 78.89% accuracy in determining an appropriate optimization rule for an assistant lens design.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofCRYSTALSen_US
dc.subjectoptical system designen_US
dc.subjectoptimizationen_US
dc.titleLens Design Method Prediction of Local Optimization Algorithm by Using Deep Learningen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/cryst12091206-
dc.identifier.isiWOS:000858611500001-
dc.relation.journalvolume12en_US
dc.relation.journalissue9en_US
dc.identifier.eissn2073-4352-
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1English-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
顯示於:電機工程學系
顯示文件簡單紀錄

Page view(s)

344
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋