Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/2351
標題: Applications of the dual integral formulation in conjunction with fast multipole method in large-scale problems for 2D exterior acoustics
作者: Jeng-Tzong Chen 
Chen, K. H.
關鍵字: Fast multipole method;Large-scale problem;Exterior acoustics;Dual boundary element method;Hypersingular equation;Divergent series
公開日期: 六月-2004
出版社: ScienceDirect
卷: 28
期: 6
起(迄)頁: 685-709
來源出版物: Engineering Analysis with Boundary Elements 
摘要: 
In this paper, we solve the large-scale problem for exterior acoustics by employing the concept of fast multipole method (FMM) to accelerate the construction of influence matrix in the dual boundary element method (DBEM). By adopting the addition theorem, the four kernels in the dual formulation are expanded into degenerate kernels, which separate the field point and source point. The separable technique can promote the efficiency in determining the coefficients in a similar way of the fast Fourier transform over the Fourier transform. The source point matrices decomposed in the four influence matrices are similar to each other or only some combinations. There are many zeros or the same influence coefficients in the field point matrices decomposed in the four influence matrices, which can avoid calculating repeatedly the same terms. The separable technique reduces the number of floating-point operations from O(N2) to where N is number of elements and a is a small constant independent of N. To speed up the convergence in constructing the influence matrix, the center of multipole is designed to locate on the center of local coordinate for each boundary element. This approach enhances convergence by collocating multipoles on each center of the source element. The singular and hypersingular integrals are transformed into the summability of divergent series and regular integrals. Finally, the FMM is shown to reduce CPU time and memory requirement thus enabling us apply BEM to solve for large-scale problems. Five moment FMM formulation was found to be sufficient for convergence. The results are compared well with those of FEM, conventional BEM and analytical solutions and it shows the accuracy and efficiency of the FMM when compared with the conventional BEM.
URI: http://scholars.ntou.edu.tw/handle/123456789/2351
ISSN: 0955-7997
DOI: 10.1016/s0955-7997(03)00122-x
顯示於:河海工程學系

顯示文件完整紀錄

WEB OF SCIENCETM
Citations

46
上周
0
上個月
0
checked on 2023/6/19

Page view(s)

145
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋