Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/2351
Title: Applications of the dual integral formulation in conjunction with fast multipole method in large-scale problems for 2D exterior acoustics
Authors: Jeng-Tzong Chen 
Chen, K. H.
Keywords: Fast multipole method;Large-scale problem;Exterior acoustics;Dual boundary element method;Hypersingular equation;Divergent series
Issue Date: Jun-2004
Publisher: ScienceDirect
Journal Volume: 28
Journal Issue: 6
Start page/Pages: 685-709
Source: Engineering Analysis with Boundary Elements 
Abstract: 
In this paper, we solve the large-scale problem for exterior acoustics by employing the concept of fast multipole method (FMM) to accelerate the construction of influence matrix in the dual boundary element method (DBEM). By adopting the addition theorem, the four kernels in the dual formulation are expanded into degenerate kernels, which separate the field point and source point. The separable technique can promote the efficiency in determining the coefficients in a similar way of the fast Fourier transform over the Fourier transform. The source point matrices decomposed in the four influence matrices are similar to each other or only some combinations. There are many zeros or the same influence coefficients in the field point matrices decomposed in the four influence matrices, which can avoid calculating repeatedly the same terms. The separable technique reduces the number of floating-point operations from O(N2) to where N is number of elements and a is a small constant independent of N. To speed up the convergence in constructing the influence matrix, the center of multipole is designed to locate on the center of local coordinate for each boundary element. This approach enhances convergence by collocating multipoles on each center of the source element. The singular and hypersingular integrals are transformed into the summability of divergent series and regular integrals. Finally, the FMM is shown to reduce CPU time and memory requirement thus enabling us apply BEM to solve for large-scale problems. Five moment FMM formulation was found to be sufficient for convergence. The results are compared well with those of FEM, conventional BEM and analytical solutions and it shows the accuracy and efficiency of the FMM when compared with the conventional BEM.
URI: http://scholars.ntou.edu.tw/handle/123456789/2351
ISSN: 0955-7997
DOI: 10.1016/s0955-7997(03)00122-x
Appears in Collections:河海工程學系

Show full item record

WEB OF SCIENCETM
Citations

46
Last Week
0
Last month
0
checked on Jun 19, 2023

Page view(s)

145
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback