Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 海洋工程科技學士學位學程(系)
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/23578
DC FieldValueLanguage
dc.contributor.authorTran, Chang-Thien_US
dc.contributor.authorLin, Chitsanen_US
dc.contributor.authorChia-Cheng Tsaien_US
dc.date.accessioned2023-02-09T00:45:06Z-
dc.date.available2023-02-09T00:45:06Z-
dc.date.issued2023-
dc.identifier.issn2073-4441-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/23578-
dc.description.abstractIn this study, the Bragg resonance of water waves scattered by multiple permeable thin barriers over a series of periodic breakwaters was solved by employing the eigenfunction matching method (EMM). The geometrical configuration was divided into multiple shelves separated by steps, on which thin permeable barriers were implemented. The solution was approximated using eigenfunctions with unknown coefficients that were considered as the amplitudes of the water waves for each shelf. The conservations of mass and momentum were then applied to form a system of linear equations, which was sequentially solved by a sparse-matrix solver. The proposed method degenerates to traditional EMM formulations if thin barriers, the permeability of the barrier, or bottom undulations are not considered. The validity of the suggested method was examined based on the results in the literature. Bragg resonances by bottom-standing, surface-piecing, and fully submerged permeable barriers over a series of periodic trapezoidal or half-cosine breakwaters were studied. In addition, the breakwater amplitudes, permeable parameters of the barriers, and incident angles of water wave scattering by different types of periodic breakwaters were discussed.en_US
dc.language.isoen_USen_US
dc.relation.ispartofWateren_US
dc.titleBragg Resonance of Water Waves by Multiple Permeable Thin Barriers over Periodic Breakwatersen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/w15030495-
dc.relation.journalvolume15en_US
dc.relation.journalissue3en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptBachelor Degree Program in Ocean Engineering and Technology-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcidhttp://orcid.org/0000-0002-4464-5623-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:海洋工程科技學士學位學程(系)
Show simple item record

Page view(s)

174
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback