Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/2359
DC FieldValueLanguage
dc.contributor.authorJeng-Tzong Chenen_US
dc.contributor.authorChen, W. C.en_US
dc.contributor.authorLin, S. R.en_US
dc.contributor.authorChen, I. L.en_US
dc.date.accessioned2020-11-17T03:22:32Z-
dc.date.available2020-11-17T03:22:32Z-
dc.date.issued2003-05-
dc.identifier.issn0045-7949-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/2359-
dc.description.abstractIn this paper, the general formulation for the static stiffness is analytically derived using the dual integral formulations. It is found that the same stiffness matrix is derived by using the integral equation no matter what the rigid body mode and the complementary solutions are superimposed in the fundamental solution. For the Laplace problem with a circular domain, the circulant was employed to derive the stiffness analytically in the discrete system. In deriving the static stiffness, the degenerate scale problem occurs when the singular influence matrix can not be inverted. The Fredholm alternative theorem and the SVD updating technique are employed to study the degenerate scale problem mathematically and numerically. The direct treatment in the matrix level is achieved to deal with the degenerate scale problems instead of using a modified fundamental solution. The addition of a rigid body term in the fundamental solution is found to shift the zero singular value for the singular matrix without disturbing the stiffness.en_US
dc.language.isoen_USen_US
dc.publisherScienceDirecten_US
dc.relation.ispartofComputers & Structuresen_US
dc.subjectDual boundary integral equationsen_US
dc.subjectRigid body modeen_US
dc.subjectLaplace problemen_US
dc.subjectFredholm alternative theoremen_US
dc.subjectSVDen_US
dc.titleRigid body mode and spurious mode in the dual boundary element formulation for the Laplace problemsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/s0045-7949(03)00013-0-
dc.relation.journalvolume81en_US
dc.relation.journalissue13en_US
dc.relation.pages1395-1404en_US
item.fulltextno fulltext-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypejournal article-
item.languageiso639-1en_US-
item.grantfulltextnone-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

WEB OF SCIENCETM
Citations

15
Last Week
0
Last month
0
checked on Jun 19, 2023

Page view(s)

114
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback