Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/23604
DC FieldValueLanguage
dc.contributor.authorWarikoo, Nehaen_US
dc.contributor.authorChang, Yung-Chunen_US
dc.contributor.authorMa, Shang-Pinen_US
dc.date.accessioned2023-02-15T01:17:32Z-
dc.date.available2023-02-15T01:17:32Z-
dc.date.issued2022-10-01-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/23604-
dc.description.abstractProtein-based studies contribute significantly to gathering functional information about biological systems; therefore, the protein-protein interaction detection task is one of the most researched topics in the biomedical literature. To this end, many state-of-the-art systems using syntactic tree kernels (TK) and deep learning have been developed. However, these models are computationally complex and have limited learning interpretability. In this paper, we introduce a linguistic-pattern-representation-based Gradient-Tree Boosting model, i.e., LpGBoost. It uses linguistic patterns to optimize and generate semantically relevant representation vectors for learning over the gradient-tree boosting. The patterns are learned via unsupervised modeling by clustering invariant semantic features. These linguistic representations are semi-interpretable with rich semantic knowledge, and owing to their shallow representation, they are also computationally less expensive. Our experiments with six protein-protein interaction (PPI) corpora demonstrate that LpGBoost outperforms the SOTA tree-kernel models, as well as the CNN-based interaction detection studies for BioInfer and AIMed corpora.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofAPPLIED SCIENCES-BASELen_US
dc.subjectprotein-protein interactionen_US
dc.subjectnatural language processingen_US
dc.subjectgradient-tree boostingen_US
dc.subjectlinguistic patternsen_US
dc.subjectbioinformaticsen_US
dc.titleGradient Boosting over Linguistic-Pattern-Structured Trees for Learning Protein-Protein Interaction in the Biomedical Literatureen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/app122010199-
dc.identifier.isiWOS:000872240100001-
dc.relation.journalvolume12en_US
dc.relation.journalissue20en_US
dc.identifier.eissn2076-3417-
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1English-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0002-3317-5750-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:資訊工程學系
Show simple item record

Page view(s)

86
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback