Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/23604
DC 欄位值語言
dc.contributor.authorWarikoo, Nehaen_US
dc.contributor.authorChang, Yung-Chunen_US
dc.contributor.authorMa, Shang-Pinen_US
dc.date.accessioned2023-02-15T01:17:32Z-
dc.date.available2023-02-15T01:17:32Z-
dc.date.issued2022-10-01-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/23604-
dc.description.abstractProtein-based studies contribute significantly to gathering functional information about biological systems; therefore, the protein-protein interaction detection task is one of the most researched topics in the biomedical literature. To this end, many state-of-the-art systems using syntactic tree kernels (TK) and deep learning have been developed. However, these models are computationally complex and have limited learning interpretability. In this paper, we introduce a linguistic-pattern-representation-based Gradient-Tree Boosting model, i.e., LpGBoost. It uses linguistic patterns to optimize and generate semantically relevant representation vectors for learning over the gradient-tree boosting. The patterns are learned via unsupervised modeling by clustering invariant semantic features. These linguistic representations are semi-interpretable with rich semantic knowledge, and owing to their shallow representation, they are also computationally less expensive. Our experiments with six protein-protein interaction (PPI) corpora demonstrate that LpGBoost outperforms the SOTA tree-kernel models, as well as the CNN-based interaction detection studies for BioInfer and AIMed corpora.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofAPPLIED SCIENCES-BASELen_US
dc.subjectprotein-protein interactionen_US
dc.subjectnatural language processingen_US
dc.subjectgradient-tree boostingen_US
dc.subjectlinguistic patternsen_US
dc.subjectbioinformaticsen_US
dc.titleGradient Boosting over Linguistic-Pattern-Structured Trees for Learning Protein-Protein Interaction in the Biomedical Literatureen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/app122010199-
dc.identifier.isiWOS:000872240100001-
dc.relation.journalvolume12en_US
dc.relation.journalissue20en_US
dc.identifier.eissn2076-3417-
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1English-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0002-3317-5750-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:資訊工程學系
顯示文件簡單紀錄

Page view(s)

86
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋