Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/23694
DC 欄位值語言
dc.contributor.authorYen, Chih-Taen_US
dc.contributor.authorChen, Tz-Yunen_US
dc.contributor.authorChen, Un-Hungen_US
dc.contributor.authorWang, Guo-Changen_US
dc.contributor.authorChen, Zong-Xianen_US
dc.date.accessioned2023-02-15T01:17:58Z-
dc.date.available2023-02-15T01:17:58Z-
dc.date.issued2023-01-01-
dc.identifier.issn1546-2218-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/23694-
dc.description.abstractA system for classifying four basic table tennis strokes using wearable devices and deep learning networks is proposed in this study. The wearable device consisted of a six-axis sensor, Raspberry Pi 3, and a power bank. Multiple kernel sizes were used in convolutional neural network (CNN) to evaluate their performance for extracting features. Moreover, a multiscale CNN with two kernel sizes was used to perform feature fusion at different scales in a concatenated manner. The CNN achieved recognition of the four table tennis strokes. Experimental data were obtained from 20 research partic-ipants who wore sensors on the back of their hands while performing the four table tennis strokes in a laboratory environment. The data were collected to verify the performance of the proposed models for wearable devices. Finally, the sensor and multi-scale CNN designed in this study achieved accuracy and F1 scores of 99.58% and 99.16%, respectively, for the four strokes. The accuracy for five-fold cross validation was 99.87%. This result also shows that the multi-scale convolutional neural network has better robustness after five-fold cross validation.en_US
dc.language.isoEnglishen_US
dc.publisherTECH SCIENCE PRESSen_US
dc.relation.ispartofCMC-COMPUTERS MATERIALS & CONTINUAen_US
dc.subjectWearable devicesen_US
dc.subjectdeep learningen_US
dc.subjectsix-axis sensoren_US
dc.subjectfeature fusionen_US
dc.subjectmulti-scale convolutional neural networksen_US
dc.subjectaction recognitionen_US
dc.titleFeature Fusion-Based Deep Learning Network to Recognize Table Tennis Actionsen_US
dc.typejournal articleen_US
dc.identifier.doi10.32604/cmc.2023.032739-
dc.identifier.isiWOS:000871059600003-
dc.relation.journalvolume74en_US
dc.relation.journalissue1en_US
dc.relation.pages83-99en_US
dc.identifier.eissn1546-2226-
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1English-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
顯示於:電機工程學系
顯示文件簡單紀錄

Page view(s)

180
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋