Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/23704
DC 欄位值語言
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorChang, Chih-Wenen_US
dc.date.accessioned2023-02-15T01:18:03Z-
dc.date.available2023-02-15T01:18:03Z-
dc.date.issued2023-02-01-
dc.identifier.issn0888-3270-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/23704-
dc.description.abstractIn the paper, the period of an n-dimensional nonlinear dynamical system is computed by a formula derived in an (n + 1)-dimensional augmented state space. The periodic conditions and nonlinear first-order ordinary differential equations constitute a specific periodic boundary value problem within a time interval, whose length is an unknown finite constant. Two periodic problems are considered: (I) boundary values are given and (II) boundary values are unknown. A boundary shape function method (BSFM), using the derived shape functions, is devised to an initial value problem with the initial values of new variables given, whereas the terminal values and period are determined by iterative algorithms. The periodic solutions obtained by the BSFM satisfy the periodic conditions automatically. For the sake of comparison, the iterative algorithms based on the shooting method are developed, directly implementing the Poincare map with the fictitious time integration method to determine the periodic solutions, where the periodic conditions are transformed to a mathematically equivalent scalar equation. Owing to the implicit, non-differentiable and nonlinear property of the scalar equation, we develop a generalized derivative-free Newton method (GDFNM) to solve the periodic problem of case (I), which can pick up very accurate period through a few iterations. In numerical examples the computed order of convergence displays the merit of the proposed iterative algorithms. The BSFM and GDFNM are better than the shooting method from the aspects of convergence speed, accuracy and stability. A conventional Poincare mapping method is introduced to solve the periodic problems with the same parameters. The BSFM converges faster and more accurate than the Poincare mapping method and is less sensitive to the initial guesses of initial values and period.en_US
dc.language.isoEnglishen_US
dc.publisherACADEMIC PRESS LTD- ELSEVIER SCIENCE LTDen_US
dc.relation.ispartofMECHANICAL SYSTEMS AND SIGNAL PROCESSINGen_US
dc.subjectNonlinear dynamical systemen_US
dc.subjectPeriodic solutionen_US
dc.subjectBoundary shape function methoden_US
dc.subjectGeneralized derivative-free Newton methoden_US
dc.subjectIterative algorithmen_US
dc.titlePeriodic solutions of nonlinear ordinary differential equations computed by a boundary shape function method and a generalized derivative-free Newton methoden_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.ymssp.2022.109712-
dc.identifier.isiWOS:000877454800003-
dc.relation.journalvolume184en_US
dc.identifier.eissn1096-1216-
item.fulltextno fulltext-
item.openairetypejournal article-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:海洋中心
顯示文件簡單紀錄

Page view(s)

140
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋