Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/23716
DC FieldValueLanguage
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorShen, Jian-Hungen_US
dc.contributor.authorChen, Yung-Weien_US
dc.date.accessioned2023-03-21T06:56:43Z-
dc.date.available2023-03-21T06:56:43Z-
dc.date.issued2022-01-01-
dc.identifier.issn1023-2796-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/23716-
dc.description.abstractThe shooting method consists of guessing unknown initial values, transforming a second-order nonlinear boundary value problem (BVP) to an initial value problem and integrating it to obtain the values at the right end to match the specified boundary condition, which acts as a target equation. In the shooting method, the key issue is accurately solving the target equation to obtain highly precise initial values. Due to the implicit and nonlinear property, we develop a generalized derivative-free Newton method (GDFNM) to solve the target equation, which offers very accurate initial values. Numerical examples are examined to show that the shooting method together with the GDFNM can generate a very accurate solution. Additionally, the GDFNM can successfully solve the three-point nonlinear BVPs with high accuracy. A new splitting-linearizing method is developed to express the approximate analytic solutions of nonlinear BVPs in terms of elementary functions, which adopts the Lyapunov technique by inserting a dummy parameter into the governing equation and the power series solution. Then, linearized differential equations are sequentially solved to derive the analytic solution.en_US
dc.language.isoEnglishen_US
dc.publisherNATL TAIWAN OCEAN UNIVen_US
dc.relation.ispartofJOURNAL OF MARINE SCIENCE AND TECHNOLOGY-TAIWANen_US
dc.subjectNonlinear boundary value problemsen_US
dc.subjectBratu problemen_US
dc.subjectShooting methoden_US
dc.subjectGeneralized derivative-free Newton methoden_US
dc.subjectSplitting-linearizing methoden_US
dc.subjectLyapunov techniqueen_US
dc.titleNumerical and Approximate Analytic Solutions of Second-order Nonlinear Boundary Value Problemsen_US
dc.typejournal articleen_US
dc.identifier.doi10.51400/2709-6998.2588-
dc.identifier.isiWOS:000928220000001-
dc.relation.journalvolume30en_US
dc.relation.journalissue6en_US
dc.relation.pages340-351en_US
dc.identifier.eissn2709-6998-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.deptCollege of Maritime Science and Management-
crisitem.author.deptDepartment of Marine Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Maritime Science and Management-
Appears in Collections:海洋中心
輪機工程學系
Show simple item record

Page view(s)

201
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback