Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/2380
DC FieldValueLanguage
dc.contributor.authorJeng-Tzong Chenen_US
dc.contributor.authorWen-Sheng Huangen_US
dc.contributor.authorJia-Wei Leeen_US
dc.contributor.authorYa-Ching Tuen_US
dc.date.accessioned2020-11-17T03:22:35Z-
dc.date.available2020-11-17T03:22:35Z-
dc.date.issued2014-12-
dc.identifier.issn0045-7949-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/2380-
dc.description.abstractMotivated by Fichera’s idea for regularizing the rank-deficiency model, we derive the free–free flexibility matrices by inverting the bordered stiffness matrix. The singular stiffness matrix of a free–free structure is expanded to a bordered matrix by adding n slack variables, where n is the nullity of the singular stiffness matrix. Besides, the corresponding n constraints are accompanied to result in a nonsingular matrix. The constraints filter out the homogeneous solution for the regularized solution. By inverting the nonsingular matrix, we can obtain the free–free flexibility matrix from the submatrices. The value of the extra degree of freedom shows the role of no solution (nonzero case) or infinite solution (zero case) with respect to the loading vector. After constructing the bordered system, the equilibrium of the specified force and the compatibility of the specified displacement can be tested according the zero slack variable. Similarly, the free–free flexibility matrix is obtained from the free–free stiffness matrix. Finally, four examples, a rod with symmetric stiffness, a plane truss, a beam and a bar with unsymmetric stiffness, were demonstrated to see the validity of the present formulation.en_US
dc.language.isoen_USen_US
dc.publisherScienceDirecten_US
dc.relation.ispartofComputers & Structuresen_US
dc.subjectFree–free flexibility matrixen_US
dc.subjectFree–free stiffness matrixen_US
dc.subjectRigid body modesen_US
dc.subjectSpurious force modesen_US
dc.subjectFichera's methoden_US
dc.subjectGeneralized inverseen_US
dc.titleA self-regularized approach for deriving the free-free flexibility and stiffness matricesen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.compstruc.2014.07.024-
dc.relation.journalvolume145en_US
dc.relation.pages12-22en_US
item.openairetypejournal article-
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.languageiso639-1en_US-
item.cerifentitytypePublications-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

WEB OF SCIENCETM
Citations

13
Last Week
0
Last month
1
checked on Jun 19, 2023

Page view(s)

182
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback