Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/23868
標題: Multiperiod Dynamic Programming Algorithm for Optimizing a Nature Reserve
作者: Lin, Chih-Wei 
Hong, Yu
Tu, Weihao
Liu, Jinfu
關鍵字: dynamic site selection;integer programming;Quanzhou Bay;spatial connectivity;spatial compactness;MODELING SPECIES DISTRIBUTIONS;SITE SELECTION;DESIGN;VALUES;REGRESSION;BENEFITS
公開日期: 五月-2022
出版社: MDPI
卷: 14
期: 6
來源出版物: Sustainability
摘要: 
Zoning adjustments are a key method of improving the conservation efficiency of a nature reserve. Existing studies typically consider the one-period programming method and ignore dynamic ecological changes during the programming of a nature reserve. In this study, a scientific method for nature reserve (NR) programming, namely the multiperiod dynamic programming (MDP) algorithm, is proposed. The MDP algorithm designs an NR over three periods and does so by using ecological suitability values for each grid area. Ecological suitability values for each period were determined based on existing data on rare aquatic animals with Maxent software and cellular automata (CA). CA were used to determine the actual protection effect and to adjust each period's ecological suitability values through comparisons with the sites' surroundings. The maximization of ecological suitability values was used as an objective function; these values were assumed to indicate protection benefits. The objective function of the MDP also includes grid perimeters and numerical minimization for spatial compactness. Moreover, we designed three MDP constraints for the dynamic programming, including base constraints, distinguishing constraints, and multiperiod constraints. In the base and distinguishing constraints, we require a grid square to be a core, buffer, or unselected square, and we require the core and buffer grids to be spatially connected. For the multiperiod constraints, we used virtual points to ensure spatial continuity in different periods while attaining high ecological suitability. Our main contributions are as follows: (1) the novel MDP algorithm combining ecological attributes and multiperiod dynamic planning to optimize NR planning; (2) the use of virtual points to avoid selecting invalid grids and to ensure spatial continuity with significant protection benefits; and (3) the definition of ecological suitability values and use of CA to simulate dynamic changes over the three periods. The results reveal that the MDP algorithm results in a reserve with greater protection benefits than current reserves with superior spatial distribution due to multiperiod programming. The proposed MDP algorithm is a novel method for the scientific optimization and adjustment of nature reserves.
URI: http://scholars.ntou.edu.tw/handle/123456789/23868
ISSN: 2071-1050
DOI: 10.3390/su14063266
顯示於:電機工程學系

顯示文件完整紀錄

Page view(s)

184
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋