Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/23870
DC FieldValueLanguage
dc.contributor.authorLin, Chih-Weien_US
dc.contributor.authorHuang, Xiupingen_US
dc.contributor.authorLin, Mengxiangen_US
dc.contributor.authorHong, Sidien_US
dc.date.accessioned2023-06-20T02:03:19Z-
dc.date.available2023-06-20T02:03:19Z-
dc.date.issued2022-01-11-
dc.identifier.issn1424-8220-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/23870-
dc.description.abstractPrecipitation intensity estimation is a critical issue in the analysis of weather conditions. Most existing approaches focus on building complex models to extract rain streaks. However, an efficient approach to estimate the precipitation intensity from surveillance cameras is still challenging. This study proposes a convolutional neural network known as the signal filtering convolutional neural network (SF-CNN) to handle precipitation intensity using surveillance-based images. The SF-CNN has two main blocks, the signal filtering block (SF block) and the gradually decreasing dimension block (GDD block), to extract features for the precipitation intensity estimation. The SF block with the filtering operation is constructed in different parts of the SF-CNN to remove the noise from the features containing rain streak information. The GDD block continuously takes the pair of the convolutional operation with the activation function to reduce the dimension of features. Our main contributions are (1) an SF block considering the signal filtering process and effectively removing the useless signals and (2) a procedure of gradually decreasing the dimension of the feature able to learn and reserve the information of features. Experiments on the self-collected dataset, consisting of 9394 raining images with six precipitation intensity levels, demonstrate the proposed approach's effectiveness against the popular convolutional neural networks. To the best of our knowledge, the self-collected dataset is the largest dataset for monitoring infrared images of precipitation intensity.en_US
dc.language.isoen_USen_US
dc.publisherMDPIen_US
dc.relation.ispartofSensorsen_US
dc.subjectdimensional reductionen_US
dc.subjectprecipitation intensityen_US
dc.subjectsignal filteringen_US
dc.titleSF-CNN: Signal Filtering Convolutional Neural Network for Precipitation Intensity Estimationen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/s22020551-
dc.identifier.pmid35062510-
dc.identifier.isiWOS:000879393600001-
dc.relation.journalvolume22en_US
dc.relation.journalissue2en_US
dc.identifier.eissn1424-8220-
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:電機工程學系
Show simple item record

Page view(s)

141
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback