Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/23873
Title: Object–Part Registration–Fusion Net for Fine-Grained Image Classification
Authors: Lin, Chih-Wei 
Lin, Mengxiang
Liu, Jinfu
Keywords: fine-grained classification;convolutional neural network;registration;FRUIT
Issue Date: Oct-2021
Publisher: MDPI
Journal Volume: 13
Journal Issue: 10
Source: Symmetry
Abstract: 
Classifying fine-grained categories (e.g., bird species, car, and aircraft types) is a crucial problem in image understanding and is difficult due to intra-class and inter-class variance. Most of the existing fine-grained approaches individually utilize various parts and local information of objects to improve the classification accuracy but neglect the mechanism of the feature fusion between the object (global) and object's parts (local) to reinforce fine-grained features. In this paper, we present a novel framework, namely object-part registration-fusion Net (OR-Net), which considers the mechanism of registration and fusion between an object (global) and its parts' (local) features for fine-grained classification. Our model learns the fine-grained features from the object of global and local regions and fuses these features with the registration mechanism to reinforce each region's characteristics in the feature maps. Precisely, OR-Net consists of: (1) a multi-stream feature extraction net, which generates features with global and various local regions of objects; (2) a registration-fusion feature module calculates the dimension and location relationships between global (object) regions and local (parts) regions to generate the registration information and fuses the local features into the global features with registration information to generate the fine-grained feature. Experiments execute symmetric GPU devices with symmetric mini-batch to verify that OR-Net surpasses the state-of-the-art approaches on CUB-200-2011 (Birds), Stanford-Cars, and Stanford-Aircraft datasets.
URI: http://scholars.ntou.edu.tw/handle/123456789/23873
ISSN: 2073-8994
DOI: 10.3390/sym13101838
Appears in Collections:電機工程學系

Show full item record

Page view(s)

136
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback