Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/23875
DC 欄位值語言
dc.contributor.authorLin, Chih-Weien_US
dc.contributor.authorHong, Sidien_US
dc.date.accessioned2023-06-20T03:40:21Z-
dc.date.available2023-06-20T03:40:21Z-
dc.date.issued2021-05-
dc.identifier.issn0178-2789-
dc.identifier.issn1432-2315-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/23875-
dc.description.abstractLocal feature patterns are conspicuous and are widely used in computer vision, especially in face recognition and retrieval. However, a statistical descriptor that can be used in various scenarios and effectively present the detailed local discrimination information of face images is a challenging and exploring task even if deep learning technology is widelyspread. In this study, we propose a novel local pattern descriptor called the Local Clustering Pattern (LCP) in high-order derivative space for facial recognition and retrieval. Unlike prior methods, LCP exploits the concept of clustering to analyze the relationship of intra- and inter-classes of the referenced pixel and its adjacent pixels to encode the local descriptor for facial recognition. There are three tasks (1) Local Clustering Pattern (LCP), (2) Clustering Coding Scheme, (3) High-order Local Clustering Pattern. To generate local clustering pattern, the local derivative variations with multi-direction are considered and that are integrated on rectangular coordinate system with the pairwise combinatorial direction. Moreover, to generate the discriminative local pattern, the features of local derivative variations are transformed from the rectangular coordinate system into the polar coordinate system to generate the characteristics of magnitude (m) and orientation (theta). Then, we shift and project the features (m and theta), which are scattered in the four quadrants of polar coordinate system, into the first quadrant of polar coordinates to strengthen the relationship of intra- and inter-classes of the referenced pixel and its adjacent pixels. To encode the local pattern, we consider the spatial relationship between reference and its adjacent pixels and fuse the clustering algorithm into the coding scheme by utilizing the relationship of intra- and inter-classes in a local patch. In addition, we extend the LCP from low- into high-order derivative space to extract the detailed and abundant information for facial description. LCP efficiently encodes the feature of a local region that is discriminative the inter-classes and robust the intra-class of the related pixels to describe a face image.en_US
dc.language.isoen_USen_US
dc.publisherSPRINGERen_US
dc.relation.ispartofThe Visual Computeren_US
dc.subjectFacial recognitionen_US
dc.subjectFacial retrievalen_US
dc.subjectLocal descriptoren_US
dc.subjectLocal Clustering Patterns (LCP)en_US
dc.subjectHistogram-baseden_US
dc.subjectPolar Coordinateen_US
dc.subjectFACE-RECOGNITIONen_US
dc.subjectDISCRIMINANT-ANALYSISen_US
dc.subjectDESCRIPTORen_US
dc.subjectSCALEen_US
dc.subjectPCAen_US
dc.titleHigh-order histogram-based local clustering patterns in polar coordinate for facial recognition and retrievalen_US
dc.typejournal articleen_US
dc.identifier.doi10.1007/s00371-021-02102-9-
dc.identifier.isiWOS:000634616600001-
dc.relation.journalvolume38en_US
dc.relation.journalissue5en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:電機工程學系
顯示文件簡單紀錄

Page view(s)

129
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋