Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/23876
DC 欄位值語言
dc.contributor.authorChih-Wei Linen_US
dc.contributor.authorSuhui Yangen_US
dc.date.accessioned2023-06-20T03:50:39Z-
dc.date.available2023-06-20T03:50:39Z-
dc.date.issued2021-09-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/23876-
dc.description.abstractIn this work, we propose a new framework, called Geospatial-temporal Convolutional Neural Network (GT-CNN), and construct the video-based geospatial-temporal precipitation dataset from the surveillance cameras of the eight weather stations (sampling points) to recognize the precipitation intensity. GT-CNN has three key modules: (1) Geospatial module, (2) Temporal module, (3) Fusion module. In the geospatial module, we extract the precipitation information from each sampling point simultaneously, and that is used to construct the geospatial relationships using LSTM between various sampling points. In the temporal module, we take 3D convolution to grab the precipitation features with time information, considering a series of precipitation images for each sampling point. Finally, we generate the fusion module to fuse the geospatial and temporal features. We evaluate our framework with three metrics and compare GT-CNN with the state-of-the-art methods using the self-collected dataset. Experimental results demonstrated that our approach surpasses state-of-the-art methods concerning various metrics.en_US
dc.language.isoen_USen_US
dc.titleGeospatial-Temporal Convolutional Neural Network for Video-Based Precipitation Intensity Recognitionen_US
dc.typeconference paperen_US
dc.relation.conference2021 IEEE International Conference on Image Processing (ICIP)en_US
dc.relation.conferenceAnchorage, AK, USAen_US
item.openairetypeconference paper-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:電機工程學系
顯示文件簡單紀錄

Page view(s)

142
checked on 2025/6/30

Google ScholarTM

檢查

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋