Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/23877
DC 欄位值語言
dc.contributor.authorLin, Chih-Weien_US
dc.contributor.authorLin, Mengxiangen_US
dc.contributor.authorYang, Suhuien_US
dc.date.accessioned2023-06-20T05:58:24Z-
dc.date.available2023-06-20T05:58:24Z-
dc.date.issued2020-
dc.identifier.issn2169-3536-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/23877-
dc.description.abstractSurveillance cameras have been widely used in urban environments and are increasingly used in rural ones. Such cameras have mostly been used for security, but they can be applied to the problem of furnishing fine-grained measurements and predictions of precipitation intensity. In this study, we formulated a stacked order-preserving (OP) learning framework to train a network using time-series data. We constructed an OP module, which uses a three-dimensional (3D) convolution operation to extract features with spatial and temporal information and that are associated with ConvLSTM; this feature extraction is used to learn the short-term and OP time-series relationships between features. Furthermore, the OP modules are stacked to form a stacked OP network (SOPNet), which strengthens the relationship between features in long-term time-series image sequences. This SOPNet can be use to obtain fine-grained measurements and predictions of precipitation intensity from images captured by outdoor surveillance cameras. Our main contributions are threefold. First, the SOPNet strengthens the short-term and long-term time-series relationship between features. Second, the SOPNet simultaneously examines spatial and temporal information to measure and predict precipitation intensity. Third, we constructed a precipitation intensity database based on optical images captured by outdoor surveillance cameras. We experimentally evaluated our proposed architecture using our self-collected data set. We found that SOPNet yields better performance and greater accuracy relative to its well-known state-of-the-art counterparts with respect to various metrics.en_US
dc.language.isoen_USen_US
dc.relation.ispartofIEEE Accessen_US
dc.subjectPrecipitation intensityen_US
dc.subject3D convolutionen_US
dc.subjectConvLSTMen_US
dc.subjectorder-preservingen_US
dc.subjectforecastingen_US
dc.subjectACTION RECOGNITIONen_US
dc.subjectNEURAL-NETWORKen_US
dc.subjectVIDEOen_US
dc.subjectLSTMen_US
dc.titleSOPNet Method for the Fine-Grained Measurement and Prediction of Precipitation Intensity Using Outdoor Surveillance Camerasen_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/ACCESS.2020.3032430-
dc.identifier.isiWOS:000584736100001-
dc.relation.journalvolume8en_US
dc.relation.pages188813-188824en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:電機工程學系
顯示文件簡單紀錄

Page view(s)

129
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋