Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/23879
DC 欄位值語言
dc.contributor.authorLin, Chih-Weien_US
dc.contributor.authorDing, Qiluen_US
dc.contributor.authorTu, Wei-Haoen_US
dc.contributor.authorHuang, Jia-Hangen_US
dc.contributor.authorLiu, Jin-Fuen_US
dc.date.accessioned2023-06-20T06:32:35Z-
dc.date.available2023-06-20T06:32:35Z-
dc.date.issued2019-
dc.identifier.issn2169-3536-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/23879-
dc.description.abstractPlant classification is a science that is used to assess the quality of forest resources and has been studied extensively. In this paper, we proposed a novel convolutional neural network known as the Fourier Dense Network (FDN) which is a data-driven method to classify the optical aerial images of plants. To efficiently classify plants, the FDN learns and extracts the features of plants in time and frequency domains from the optical images captured using an unmanned aerial vehicle (UAV). In FDN, we designed a fast Fourier dense block (FF-dense block) that describes the features of the plants by using the magnitude and phase information in the frequency domain. Moreover, we used a transition layer to reduce the dimension of feature maps between two FF-dense blocks in the time domain The primary contributions of this study are as follows: (1) an FF-dense block that considers frequency information and transfers the information into various layers of a block was designed; and (2) the characteristics between the time and frequency domains were repeatedly extracted and combined to more effectively describe the characteristics of tree species. To evaluate our study, we established a novel dataset comprising the UAV-based optical images of plants-vegetational optical aerial image dataset-for conducting plant classification and information retrieval. The dataset contains more than 21 863 images of 12 plants. To the best of our knowledge, this is the largest publicly available dataset of the UAV-based optical images of plants. The experimental results demonstrated that the FDN can achieve state-of-the-art performance in terms of plant classification.en_US
dc.language.isoen_USen_US
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERSen_US
dc.relation.ispartofIEEE Accessen_US
dc.subjectPlant classificationen_US
dc.subjectfast Fourieren_US
dc.subjectconvolutional networken_US
dc.subjectunmanned aerial vehicleen_US
dc.subjectTREE SPECIES CLASSIFICATIONen_US
dc.subjectMULTISPECTRAL IMAGERYen_US
dc.subjectLIDAR DATAen_US
dc.subjectSHAPE-FEATURESen_US
dc.subjectIDENTIFICATIONen_US
dc.subjectFORESTen_US
dc.subjectTEXTUREen_US
dc.subjectFUSIONen_US
dc.subjectCOLORen_US
dc.titleFourier Dense Network to Conduct Plant Classification Using UAV-Based Optical Imagesen_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/ACCESS.2019.2895243-
dc.identifier.isiWOS:000459287200001-
dc.relation.journalvolume7en_US
dc.relation.pages17736-17749en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:電機工程學系
顯示文件簡單紀錄

Page view(s)

148
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋