Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/23881
DC 欄位值語言
dc.contributor.authorLin, Chih-Weien_US
dc.date.accessioned2023-06-20T07:06:22Z-
dc.date.available2023-06-20T07:06:22Z-
dc.date.issued2018-04-
dc.identifier.issn10473203-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/23881-
dc.description.abstractMoving cast shadows detection and removal are indispensable for object detection and are the problems in visual surveillance applications which have been studied over the years. However, finding an efficient model that can handle the issue of moving cast shadow in various situations is still challenging. Unlike prior methods, we use a data-driven method without strong parametric assumptions or complex models to address the problem of moving cast shadow. In this paper, we propose a novel feature-extracting framework called Scale-Relation MultiLayer Pooling Feature Extracting (SMPF) which includes two main tasks: (1) Scale-Relation Scheme (SRS), (2) Multi-Layer Pooling Scheme (MLPS). By leveraging the scale space, SRS firstly decomposes feature images of each shadow properties into various scales and further considers the relationship between adjacent scaled feature images of each shadow properties to extract the scale-relation features. Then, we design the multi-layer pooling scheme (MLPS) to integrate the features in a local region and to reduce the dimension of extracting features. After that, the density map is generated for various properties of shadow with low dimension. Finally, to seek the criteria for discriminating moving cast shadow, we use random forest algorithm as the ensemble decision scheme. The main contributions of this study are (1) we design the features with multi-scale which can provide abundant information to describe the moving cast shadow, (2) the multi-layer pooling scheme generates the density map to integrate and reduce the dimensions of features. Experiments on the popular benchmarks and the proposed dataset with benchmarks demonstrate that the proposed method can achieve the performances of the popular methodologies.en_US
dc.language.isoen_USen_US
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCEen_US
dc.relation.ispartofJournal of Visual Communication and Image Representationen_US
dc.subjectShadow removalen_US
dc.subjectMoving cast shadowen_US
dc.subjectScale-relationen_US
dc.subjectMulti-layer poolingen_US
dc.subjectEnsemble decision schemeen_US
dc.subjectOBJECT DETECTIONen_US
dc.subjectMOTIONen_US
dc.subjectSEGMENTATIONen_US
dc.subjectSURVEILLANCEen_US
dc.subjectREMOVALen_US
dc.titleMoving cast shadow detection using scale-relation multi-layer pooling featuresen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.jvcir.2018.06.028-
dc.identifier.isiWOS:000445318100044-
dc.relation.journalvolume55en_US
dc.relation.pages504-517en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:電機工程學系
顯示文件簡單紀錄

Page view(s)

106
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋