Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/2388
DC FieldValueLanguage
dc.contributor.authorJeng-Tzong Chenen_US
dc.contributor.authorJia-Nan Keen_US
dc.contributor.authorHuan-Zhen Liaoen_US
dc.date.accessioned2020-11-17T03:22:35Z-
dc.date.available2020-11-17T03:22:35Z-
dc.date.issued2009-02-
dc.identifier.issn1546-2226-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/2388-
dc.description.abstractA null-field approach is employed to derive the Green's function for boundary value problems stated for the Laplace equation with circular boundaries. The kernel function and boundary density are expanded by using the degenerate kernel and Fourier series, respectively. Series-form Green's function for interior and exterior problems of circular boundary are derived and plotted in a good agreement with the closed-form solution. The Poisson integral formula is extended to an annular case from a circle. Not only an eccentric ring but also a half-plane problem with an aperture are demonstrated to see the validity of the present approach. Besides, a half-plane problem with a circular hole subject to Dirichlet and Robin boundary conditions and a half-plane problem with a circular hole and a semi-circular inclusion are solved. Good agreement is made after comparing with the Melnikov's results.en_US
dc.language.isoen_USen_US
dc.publisherTech Science Pressen_US
dc.relation.ispartofComputers, Materials & Continuaen_US
dc.subjectdegenerate kernelen_US
dc.subjectFourier seriesen_US
dc.subjectGreen's functionen_US
dc.subjectnull-field approachen_US
dc.subjectPoisson integral formulaen_US
dc.titleConstruction of Green's function using null-field integral approach for Laplace problems with circular boundariesen_US
dc.typejournal articleen_US
dc.identifier.doi10.3970/cmc.2009.009.093-
dc.relation.journalvolume9en_US
dc.relation.journalissue2en_US
dc.relation.pages93-110en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

Page view(s)

100
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback