Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/24112
DC 欄位值語言
dc.contributor.author林清池en_US
dc.contributor.authorLu, HIen_US
dc.contributor.authorSun, IFen_US
dc.date.accessioned2023-09-20T01:42:56Z-
dc.date.available2023-09-20T01:42:56Z-
dc.date.issued2004-01-01-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/24112-
dc.description.abstractLet G be an n-node planar graph. In a visibility representation of G, each node of G is represented by a horizontal line segment such that the line segments representing any two adjacent nodes of G are vertically visible to each other. In the present paper we give the best known compact visibility representation of G. Given a canonical ordering of the triangulated G, our algorithm draws the graph incrementally in a greedy manner. We show that one of three canonical orderings obtained from Schnyder's realizer for the triangulated G yields a visibility representation of G no wider than [22n-40/15]. Our easy-to-implement O(n)-time algorithm bypasses the complicated subroutines for four-connected components and four-block trees required by the best previously known algorithm of Kant. Our result provides a negative answer to Kant's open question about whether [3n-6/2] is a worst-case lower bound on the required width. Also, if G has no degree-three ( respectively, degree-five) internal node, then our visibility representation for G is no wider than [4n-9/3]( respectively, [4n-7/3]). Moreover, if G is four-connected, then our visibility representation for G is no wider than n - 1, matching the best known result of Kant and He. As a by-product, we give a much simpler proof for a corollary of Wagner's theorem on realizers due to Bonichon, Le Saec, and Mosbah.en_US
dc.language.isoen_USen_US
dc.publisherSIAM PUBLICATIONS3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688en_US
dc.subjectDRAWINGSen_US
dc.subjectLAYOUTSen_US
dc.titleImproved compact visibility representation of planar graph via Schnyder's realizeren_US
dc.typejournal articleen_US
dc.identifier.doi10.1137/S0895480103420744-
dc.relation.journalvolume18en_US
dc.relation.journalissue1en_US
dc.relation.pages19-29en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:資訊工程學系
顯示文件簡單紀錄

Page view(s)

235
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋