Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/24257
標題: Anomalous behavior recognition of underwater creatures using lite 3D full-convolution network
作者: Jung-Hua Wang 
Te-Hua Hsu 
Yi-Chung Lai
Yan-Tsung Peng
Zhen-Yao Chen
Ying-Ren Lin
Chang-Wen Huang 
Chung-Ping Chiang
公開日期: 13-十一月-2023
出版社: Springer Nature
卷: 13
起(迄)頁: 20051
來源出版物: Scientific Reports
摘要: 
Global warming and pollution could lead to the destruction of marine habitats and loss of species. The anomalous behavior of underwater creatures can be used as a biometer for assessing the health status of our ocean. Advances in behavior recognition have been driven by the active application of deep learning methods, yet many of them render superior accuracy at the cost of high computational complexity and slow inference. This paper presents a real-time anomalous behavior recognition approach that incorporates a lightweight deep learning model (Lite3D), object detection, and multitarget tracking. Lite3D is characterized in threefold: (1) image frames contain only regions of interest (ROI) generated by an object detector; (2) no fully connected layers are needed, the prediction head itself is a flatten layer of 1 ×
URI: http://scholars.ntou.edu.tw/handle/123456789/24257
DOI: 10.1038/s41598-023-47128-2
顯示於:水產養殖學系
電機工程學系

顯示文件完整紀錄

Page view(s)

204
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋