Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 海洋工程科技學士學位學程(系)
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/24349
DC FieldValueLanguage
dc.contributor.authorHuang, Chai-Chengen_US
dc.contributor.authorTang, Hung-Jieen_US
dc.contributor.authorWang, Bo-Sengen_US
dc.date.accessioned2023-12-28T08:14:19Z-
dc.date.available2023-12-28T08:14:19Z-
dc.date.issued2010-
dc.identifier.issn0364-9059-
dc.identifier.issn1558-1691-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/24349-
dc.description.abstractTo mitigate marine pollution intensity at the sea bottom, an automatic rotating type of cage systems such as a single-point-mooring (SPM) cage system is often regarded as biofriendly equipment for fish farming in the open sea due to spreading uneaten waste feed and fish feces into a vast area. Though the SPM cage dynamic features under regular sea state have been investigated in previous researches, the in situ sea state is by no means a regular one, thus a further exploration of the dynamic response in the random sea is critical before deploying cages into the open sea. This work developed a numerical model for irregular sea states to simulate an SPM cage system in an unsheltered open sea, considering the environmental conditions as irregular waves combined with a steady uniform current. To validate the numerical model, a full-scale physical model was tested in the field, where both sea states and mooring line tension were recorded. Results indicate that the numerical model predictions have good agreement with field measurements in both time and frequency domains, while the net-volume deformation is presented numerically to show fish net space variation in a random sea.en_US
dc.language.isoen_USen_US
dc.publisherIEEEen_US
dc.relation.ispartofIEEE Journal of Oceanic Engineeringen_US
dc.titleNumerical Modeling for an In Situ Single-Point-Mooring Cage Systemen_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/JOE.2010.2050351-
dc.identifier.isiWOS:000283226500009-
dc.relation.journalvolume35en_US
dc.relation.journalissue3en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptBachelor Degree Program in Ocean Engineering and Technology-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Engineering-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
Appears in Collections:海洋工程科技學士學位學程(系)
Show simple item record

Page view(s)

132
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback