Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/24426
標題: A Resilient Power Fingerprinting Selection Mechanism of Device Load Recognition for Trusted Industrial Internet of Things
作者: Lai, Chin-Feng
Chen, Shih-Yeh 
Hwang, Ren-Hung
公開日期: 八月-2018
出版社: IEEE
卷: 14
期: 8
起(迄)頁: 3581-3589
來源出版物: IEEE Transactions on Industrial Informatics
摘要: 
In order to monitor the stability of industrial systems, engineers installed diversified sensors in systems, and used communication devices to transfer the sensed data to the cloud platform for real-time monitoring and event detection. Furthermore, as industry demand for power grows, the scale and quantity of power systems gradually increase, and the original network data transmission architecture cannot bear such large-scale communication, especially the communication bandwidth tolerance isn't allowed for trusted industrial Internet of things. Therefore, this trusted transmission problem will be one of challenges of the industrial Internet of things. In the application of device load recognition, how to create power fingerprinting recognition sample data, reduce the cloud platform computation complexity and the transmission quantity of sensed data without losing detection accuracy are the subjects of this study. Therefore, this study proposes a resilient section selection mechanism of power fingerprinting applied to device load recognition, in order to determine the transmission time and select the power fingerprinting section to be resiliently transferred, and replace the cycle fixed full power fingerprinting data transfer for trusted industrial Internet of things. According to the experimental results, in the case of multi-load, the power fingerprinting of the first 25% section have the maximum recognition of 87.5%.
URI: http://scholars.ntou.edu.tw/handle/123456789/24426
ISSN: 1551-3203
DOI: 10.1109/TII.2017.2766885
顯示於:資訊工程學系

顯示文件完整紀錄

Page view(s)

58
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋