Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/24510
DC 欄位值語言
dc.contributor.authorNafei, Amirhosseinen_US
dc.contributor.authorHuang, Chien-Yien_US
dc.contributor.authorAzizi, S. Pourmohammaden_US
dc.contributor.authorChen, Shu-Chuanen_US
dc.date.accessioned2024-03-04T08:53:02Z-
dc.date.available2024-03-04T08:53:02Z-
dc.date.issued2022-12-01-
dc.identifier.issn1220-1766-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/24510-
dc.description.abstractLinear Programming (LP) is an essential approach in mathematical programming because it is a viable technique used for addressing linear systems involving linear parameters and continuous constraints. The most important use of LP resides in solving the issues requiring resource management. Because many real-world issues are too complicated to be accurately characterized, indeterminacy is often present in every engineering planning process. Neutrosophic logic, which is an application of intuitionistic fuzzy sets, is a useful logic for dealing with indeterminacy. Neutrosophic Linear Programming (NLP) issues are essential in neutrosophic modelling because they may express uncertainty in the physical universe. Numerous techniques have been proposed to alleviate NLP difficulties. On the surface, the current approaches in the specialized literature are unable to tackle issues with non-deterministic variables. In other words, no method for solving a truly neutrosophic problem has been offered. For the first time, a unique approach is provided for tackling Fully Neutrosophic Linear Programming (FNLP) problems in this study. The proposed study uses a decomposition method to break the FNLP problem into three separate bounded problems. Then, these problems are solved using simplex techniques. Unlike other existing methods, the proposed method can solve NLP problems with neutrosophic values for variables. In this research, the decision-makers have the freedom to consider the variables with neutrosophic structure, while obtaining the optimal objective value as a crisp number. It should also be noted that the typical NLP problems, which can be solved by means of the existing methods, can also be solved through the method proposed in this paper.en_US
dc.language.isoEnglishen_US
dc.publisherNATL INST R&D INFORMATICS-ICIen_US
dc.relation.ispartofSTUDIES IN INFORMATICS AND CONTROLen_US
dc.subjectLinear programmingen_US
dc.subjectNeutrosophic setsen_US
dc.subjectNeutrosophic linear programmingen_US
dc.subjectDirect methoden_US
dc.titleAn Optimized Method for Solving Membership-based Neutrosophic Linear Programming Problemsen_US
dc.typejournal articleen_US
dc.identifier.doi10.24846/v31i4y202205-
dc.identifier.isiWOS:000903966600005-
dc.relation.journalvolume31en_US
dc.relation.journalissue4en_US
dc.relation.pages45-52en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1English-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:電機工程學系
顯示文件簡單紀錄

Page view(s)

103
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋