Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/24569
DC 欄位值語言
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorLi, Botongen_US
dc.date.accessioned2024-03-04T08:53:18Z-
dc.date.available2024-03-04T08:53:18Z-
dc.date.issued2023-05-01-
dc.identifier.issn0008-4204-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/24569-
dc.description.abstractA method to construct the boundary shape function (BSF) and then two novel methods are developed to obtain the solutions of fourth-order singularly perturbed beam equation and nonlinear boundary value problem (BVP). In the first-type algorithm, the free function is a series of complete basis functions, while the corresponding BSFs are new bases. The trial functions with fractional powers exponential are suitable for the singularly perturbed beam equation under fixed-end and simply supported boundary conditions. With the aid of the BSF, we can improve the asymptotic and uniform approximations to exactly satisfy the prescribed boundary conditions. In the second-type algorithm, the solution of a nonlinear BVP is viewed as a boundary shape function, while the free function is regarded as a new variable. With this means, the fourth-order nonlinear BVP is exactly converted to an initial value problem with a new variable, the terminal value of which is unknown, when the initial conditions are given. The computed order of convergence and an error estimation are given. Numerical illustrations, including the singularly perturbed examples, show that the present methods, based on the new idea of the BSF, are highly effective, accurate, and fast convergent.en_US
dc.language.isoEnglishen_US
dc.publisherCANADIAN SCIENCE PUBLISHINGen_US
dc.relation.ispartofCANADIAN JOURNAL OF PHYSICSen_US
dc.subjectsingularly perturbed beam equationen_US
dc.subjectnonlinear boundary value problemen_US
dc.subjectcollocation methoden_US
dc.subjectexponentialen_US
dc.subjectpoly-nomial trial functionsen_US
dc.subjectboundary shape function methoden_US
dc.titleSolving the fourth-order nonlinear boundary value problem by a boundary shape function methoden_US
dc.typejournal articleen_US
dc.identifier.doi10.1139/cjp-2021-0224-
dc.identifier.isiWOS:001119665800001-
dc.relation.journalvolume101en_US
dc.relation.journalissue5en_US
dc.relation.pages248-256en_US
dc.identifier.eissn1208-6045-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:海洋中心
顯示文件簡單紀錄

Page view(s)

86
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋