Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/24584
DC FieldValueLanguage
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorEl-Zahar, Essam R.en_US
dc.contributor.authorChang, Chih-Wenen_US
dc.date.accessioned2024-03-04T08:53:23Z-
dc.date.available2024-03-04T08:53:23Z-
dc.date.issued2023-11-01-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/24584-
dc.description.abstractA nonlinear equation f(x)=0 is mathematically transformed to a coupled system of quasi-linear equations in the two-dimensional space. Then, a linearized approximation renders a fractional iterative scheme xn+1=xn-f(xn)/[a+bf(xn)], which requires one evaluation of the given function per iteration. A local convergence analysis is adopted to determine the optimal values of a and b. Moreover, upon combining the fractional iterative scheme to the generalized quadrature methods, the fourth-order optimal iterative schemes are derived. The finite differences based on three data are used to estimate the optimal values of a and b. We recast the Newton iterative method to two types of derivative-free iterative schemes by using the finite difference technique. A three-point generalized Hermite interpolation technique is developed, which includes the weight functions with certain constraints. Inserting the derived interpolation formulas into the triple Newton method, the eighth-order optimal iterative schemes are constructed, of which four evaluations of functions per iteration are required.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofMATHEMATICSen_US
dc.subjectnonlinear equationen_US
dc.subjecttwo-dimensional approachen_US
dc.subjectfractional iterative schemeen_US
dc.subjectmodified derivative-free Newton methoden_US
dc.subjectquadraturesen_US
dc.subjectfourth-order optimal iterative schemeen_US
dc.subjectthree-point generalized Hermite interpolationen_US
dc.subjecteighth-order optimen_US
dc.titleA Two-Dimensional Variant of Newton's Method and a Three-Point Hermite Interpolation: Fourth- and Eighth-Order Optimal Iterative Schemesen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/math11214529-
dc.identifier.isiWOS:001100540700001-
dc.relation.journalvolume11en_US
dc.relation.journalissue21en_US
dc.identifier.eissn2227-7390-
item.fulltextno fulltext-
item.openairetypejournal article-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:海洋中心
Show simple item record

Page view(s)

66
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback