Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/2459
DC FieldValueLanguage
dc.contributor.authorJeng-Tzong Chenen_US
dc.contributor.authorAn-Chien Wuen_US
dc.date.accessioned2020-11-17T03:22:46Z-
dc.date.available2020-11-17T03:22:46Z-
dc.date.issued2007-05-
dc.identifier.issn1528-9036-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/2459-
dc.description.abstractIn this paper, we derive the null-field integral equation for an infinite medium containing circular holes and/or inclusions with arbitrary radii and positions under the remote antiplane shear. To fully capture the circular geometries, separable expressions of fundamental solutions in the polar coordinate for field and source points and Fourier series for boundary densities are adopted to ensure the exponential convergence. By moving the null-field point to the boundary, singular and hypersingular integrals are transformed to series sums after introducing the concept of degenerate kernels. Not only the singularity but also the sense of principle values are novelly avoided. For the calculation of boundary stress, the Hadamard principal value for hypersingularity is not required and can be easily calculated by using series sums. Besides, the boundary-layer effect is eliminated owing to the introduction of degenerate kernels. The solution is formulated in a manner of semi-analytical form since error purely attributes to the truncation of Fourier series. The method is basically a numerical method, and because of its semi-analytical nature, it possesses certain advantages over the conventional boundary element method. The exact solution for a single inclusion is derived using the present formulation and matches well with the Honein et al.’s solution by using the complex-variable formulation (Honein, E., Honein, T., and Hermann, G., 1992, Appl. Math., 50, pp. 479–499). Several problems of two holes, two inclusions, one cavity surrounded by two inclusions and three inclusions are revisited to demonstrate the validity of our method. The convergence test and boundary-layer effect are also addressed. The proposed formulation can be generalized to multiple circular inclusions and cavities in a straightforward way without any difficulty.en_US
dc.language.isoen_USen_US
dc.publisherThe American Society of Mechanical Engineersen_US
dc.relation.ispartofJournal of Applied Mechanicsen_US
dc.subjectboundary integral equationsen_US
dc.subjectboundary-elements methodsen_US
dc.subjectboundary-value problemsen_US
dc.subjectFourier seriesen_US
dc.subjectinternal stressesen_US
dc.subjectinclusionsen_US
dc.titleNull-field approach for the multi-inclusion problem under antiplane shearsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1115/1.2338056-
dc.relation.journalvolume74en_US
dc.relation.journalissue3en_US
dc.relation.pages469-487en_US
item.fulltextno fulltext-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypejournal article-
item.languageiso639-1en_US-
item.grantfulltextnone-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

Page view(s)

134
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback