Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 系統工程暨造船學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/24685
DC 欄位值語言
dc.contributor.authorTang, Yao-Chien_US
dc.contributor.authorLi, Kuo-Haoen_US
dc.date.accessioned2024-03-06T01:10:08Z-
dc.date.available2024-03-06T01:10:08Z-
dc.date.issued2023/12/1-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/24685-
dc.description.abstractBearings are one of the critical components of any mechanical equipment. They induce most equipment faults, and their health status directly impacts the overall performance of equipment. Therefore, effective bearing fault diagnosis is essential, as it helps maintain the equipment stability, increasing economic benefits through timely maintenance. Currently, most studies focus on extracting fault features, with limited attention to establishing fault thresholds. As a result, these thresholds are challenging to utilize in the automatic monitoring diagnosis of intelligent devices. This study employed the generalized fractal dimensions to effectively extract the feature of time-domain vibration signals of bearings. The optimal fault threshold model was developed using the receiver operating characteristic curve, which served as the baseline of exception judgment. The extracted fault threshold model was verified using two bearing operation experiments. The experimental results revealed different damaged positions and components observed in the two experiments. The same fault threshold model was obtained using the method proposed in this study, and it effectively diagnosed the abnormal states within the signals. This finding confirms the effectiveness of the diagnostic method proposed in this study.en_US
dc.language.isoEnglishen_US
dc.publisherIOP Publishing Ltden_US
dc.relation.ispartofMACHINE LEARNING-SCIENCE AND TECHNOLOGYen_US
dc.subjectthresholdingen_US
dc.subjectbearing fault diagnosisen_US
dc.subjectgeneralized fractal dimensionsen_US
dc.subjectreceiver operating characteristic curveen_US
dc.subjectoptimal diagnosis thresholdsen_US
dc.titleA machine-learning approach to setting optimal thresholds and its application in rolling bearing fault diagnosisen_US
dc.typejournal articleen_US
dc.identifier.doi10.1088/2632-2153/ad0ab3-
dc.identifier.isiWOS:001102964200001-
dc.relation.journalvolume4en_US
dc.relation.journalissue4en_US
dc.identifier.eissn2632-2153-
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1English-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Systems Engineering and Naval Architecture-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
顯示於:系統工程暨造船學系
顯示文件簡單紀錄

Page view(s)

135
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋