Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/24692
DC FieldValueLanguage
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorKuo, Chung-Lunen_US
dc.date.accessioned2024-03-06T02:05:12Z-
dc.date.available2024-03-06T02:05:12Z-
dc.date.issued2023/11/8-
dc.identifier.issn0955-7997-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/24692-
dc.description.abstractThe paper creates two new families of fundamental solutions for the 3D Laplace equation, presented into two parts. For the first part in terms of a planar line as a new coordinate the derived 2D like fundamental solution has a logarithmic singularity, which results in a method of pseudo fundamental solutions. We propose two methods to determine the optimal values of the offset parameter used to locate the source points. In the second part, an anisotropic distance function r(g) in terms of a symmetric non-negative anisotropic metric tensor is introduced, which satisfies a certain quadratic matrix equation, and then ln r(g) is proved to be a new fundamental solution. Using a unit orientation vector we can derive the metric tensor in closed-form, and prove that it is a singular projection operator. Given the unit orientation vector satisfying a cone condition, a method of anisotropic fundamental solutions is developed. They are distinct from the traditional 3D MFS. Owing to a weaker singularity than that of 1/r appeared in the 3D MFS, the method of pseudo fundamental solutions and the method of anisotropic fundamental solutions outperform the 3D MFS. Some numerical experiments explore the performance of these two novel methods.en_US
dc.language.isoEnglishen_US
dc.publisherELSEVIER SCI LTDen_US
dc.relation.ispartofENGINEERING ANALYSIS WITH BOUNDARY ELEMENTSen_US
dc.subject3D Laplace equationen_US
dc.subjectMethod of pseudo fundamental solutionsen_US
dc.subjectMethod of anisotropic fundamental solutionsen_US
dc.subjectMaximal projection methoden_US
dc.subjectSubstitution function methoden_US
dc.titlePseudo and anisotropic MFS for Laplace equation and optimal sources using maximal projection method with a substitution functionen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.enganabound.2023.11.005-
dc.identifier.isiWOS:001115083400001-
dc.relation.journalvolume158en_US
dc.relation.pages313-320en_US
dc.identifier.eissn1873-197X-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:海洋中心
Show simple item record

Page view(s)

204
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback