Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 系統工程暨造船學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/24697
Title: Characterizing environmental pollution with civil complaints and social media data: A case of the Greater Taipei Area
Authors: Guo, Mengdi
Lin, Yu
Shyu, Rong-Juin 
Huang, Jianxiang
Keywords: Environmental pollution;Civil complaints;Phone-based systems;Social media;Machine learning;Greater Taipei Area
Issue Date: 2023
Publisher: ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
Journal Volume: 348
Source: JOURNAL OF ENVIRONMENTAL MANAGEMENT
Abstract: 
Environmental pollution is a major cause of nuisance and ill health among urban residents. Complaints are traditionally self-reported through phone-based systems. Social media provide novel channels to detect pollution-related incidents; however, their reliability has not been sufficiently evaluated. This study aimed to compare pollution incidents expressed on Twitter with those extracted from phone-based systems and to identify the built environment and socioeconomic attributes that can predict the likelihood of pollution incidents. A total of 639,746 tweets were retrieved from the Greater Taipei Area in 2017 and 110,716 self-reported pollution incidents were extracted from the Public Nuisance Petition system during the same period. The results suggest that complaints collected from phone-based systems and Twitter were found to have correlated with each other spatially, albeit they differ in temporal profiles and by the proportion of pollution categories. Catering businesses and the entertainment activities they attract appear to be the main sources of pollution complaints and can be precisely captured by geotagged tweets. This can serve as a strong predictor for pollution incidents, more than traditional indicators such as population density or industrial activities, as suggested by earlier studies. Social media analytics, with their ability to monitor and analyze online discussions in a timely manner, can be a valuable supplement to existing phone-based pollution monitoring procedures. The methodologies developed in this study have the potential to support the proactive management of urban environmental pollution, in which resources can be prioritized in key areas to further enhance the quality of urban services.
URI: http://scholars.ntou.edu.tw/handle/123456789/24697
ISSN: 0301-4797
DOI: 10.1016/j.jenvman.2023.119310
Appears in Collections:系統工程暨造船學系

Show full item record

Page view(s)

107
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback