Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/24716
DC FieldValueLanguage
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorKuo, Chung-Lunen_US
dc.contributor.authorChang, Chih-Wenen_US
dc.date.accessioned2024-03-06T03:51:35Z-
dc.date.available2024-03-06T03:51:35Z-
dc.date.issued2024/1/15-
dc.identifier.issn1526-1492-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/24716-
dc.description.abstractTo solve the Laplacian problems, we adopt a meshless method with the multiquadric radial basis function (MQRBF) as a basis whose center is distributed inside a circle with a fictitious radius. A maximal projection technique is developed to identify the optimal shape factor and fictitious radius by minimizing a merit function. A sample function is interpolated by the MQ-RBF to provide a trial coefficient vector to compute the merit function. We can quickly determine the optimal values of the parameters within a preferred rage using the golden section search algorithm. The novel method provides the optimal values of parameters and, hence, an optimal MQ-RBF; the performance of the method is validated in numerical examples. Moreover, nonharmonic problems are transformed to the Poisson equation endowed with a homogeneous boundary condition; this can overcome the problem of these problems being ill-posed. The optimal MQ-RBF is extremely accurate. We further propose a novel optimal polynomial method to solve the nonharmonic problems, which achieves high precision up to an order of 10-11.en_US
dc.language.isoEnglishen_US
dc.publisherTECH SCIENCE PRESSen_US
dc.relation.ispartofCMES-COMPUTER MODELING IN ENGINEERING & SCIENCESen_US
dc.subjectLaplace equationen_US
dc.subjectnonharmonic boundary value problemen_US
dc.subjectIll-posed problemen_US
dc.subjectmaximal projectionen_US
dc.subjectoptimal shape factor and fictitious radiusen_US
dc.subjectoptimal MQ-RBFen_US
dc.subjectoptimal polynomial methoden_US
dc.titleOptimal Shape Factor and Fictitious Radius in the MQ-RBF: Solving Ill-Posed Laplacian Problemsen_US
dc.typejournal articleen_US
dc.identifier.doi10.32604/cmes.2023.046002-
dc.identifier.isiWOS:001148413200001-
dc.identifier.eissn1526-1506-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:海洋中心
Show simple item record

Page view(s)

141
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback