Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/24716
DC 欄位值語言
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorKuo, Chung-Lunen_US
dc.contributor.authorChang, Chih-Wenen_US
dc.date.accessioned2024-03-06T03:51:35Z-
dc.date.available2024-03-06T03:51:35Z-
dc.date.issued2024/1/15-
dc.identifier.issn1526-1492-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/24716-
dc.description.abstractTo solve the Laplacian problems, we adopt a meshless method with the multiquadric radial basis function (MQRBF) as a basis whose center is distributed inside a circle with a fictitious radius. A maximal projection technique is developed to identify the optimal shape factor and fictitious radius by minimizing a merit function. A sample function is interpolated by the MQ-RBF to provide a trial coefficient vector to compute the merit function. We can quickly determine the optimal values of the parameters within a preferred rage using the golden section search algorithm. The novel method provides the optimal values of parameters and, hence, an optimal MQ-RBF; the performance of the method is validated in numerical examples. Moreover, nonharmonic problems are transformed to the Poisson equation endowed with a homogeneous boundary condition; this can overcome the problem of these problems being ill-posed. The optimal MQ-RBF is extremely accurate. We further propose a novel optimal polynomial method to solve the nonharmonic problems, which achieves high precision up to an order of 10-11.en_US
dc.language.isoEnglishen_US
dc.publisherTECH SCIENCE PRESSen_US
dc.relation.ispartofCMES-COMPUTER MODELING IN ENGINEERING & SCIENCESen_US
dc.subjectLaplace equationen_US
dc.subjectnonharmonic boundary value problemen_US
dc.subjectIll-posed problemen_US
dc.subjectmaximal projectionen_US
dc.subjectoptimal shape factor and fictitious radiusen_US
dc.subjectoptimal MQ-RBFen_US
dc.subjectoptimal polynomial methoden_US
dc.titleOptimal Shape Factor and Fictitious Radius in the MQ-RBF: Solving Ill-Posed Laplacian Problemsen_US
dc.typejournal articleen_US
dc.identifier.doi10.32604/cmes.2023.046002-
dc.identifier.isiWOS:001148413200001-
dc.identifier.eissn1526-1506-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:海洋中心
顯示文件簡單紀錄

Page view(s)

141
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋