Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/24759
DC 欄位值語言
dc.contributor.authorChi-Han Chuangen_US
dc.contributor.authorChin-Chun Changen_US
dc.contributor.authorShyi-Chyi Chengen_US
dc.date.accessioned2024-03-15T07:39:13Z-
dc.date.available2024-03-15T07:39:13Z-
dc.date.issued2009-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/24759-
dc.description.abstractIt is desirable and yet remains as a challenge for querying multimedia data by finding an object inside a target image. The effectiveness of region-based representation for content-based image retrieval is extensively studied in the literature. One common weakness of the region-based approaches only in terms of regions’ low-level visual features is that the homogeneous image regions have little correspondence to the semantic objects, thus, the retrieval results are often far from satisfactory. In addition, the performance is also ruled by the consistency of the segmentation result of the region of the target object in the query and target images. Instead of solving these problems independently, in this paper, a region-based object retrieval using the generalized Hough transform (GHT) and content aware image segmentation is proposed. The proposed approach has two phases. First, the learning phase finds and stores the stable parameters for segmenting each database image, and then sorts the database images according to the found segmentation parameters. In the retrieval phase, an incremental image segmentation process based on the stored segmentation parameters is performed to segment a query image into regions for retrieving visual objects inside database images through the GHT with a modified voting scheme for locating the target visual object under the geometry transformation. With the learned parameters for image segmentation, the segmentation results of query and target images are more stable and consistent. Computer simulation results show that the proposed method gives good performance in terms of retrieval accuracy, robustness, and execution speed.en_US
dc.language.isoen_USen_US
dc.publisherIEEEen_US
dc.titleContent Aware Image Segmentation for Region-Based Object Retrievalen_US
dc.typeconference paperen_US
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypeconference paper-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:資訊工程學系
顯示文件簡單紀錄

Page view(s)

151
checked on 2025/6/30

Google ScholarTM

檢查

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋