Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/2476
DC FieldValueLanguage
dc.contributor.authorChen, K. H.en_US
dc.contributor.authorKao, J.H.en_US
dc.contributor.authorJeng-Tzong Chenen_US
dc.contributor.authorLiau, J. F.en_US
dc.date.accessioned2020-11-17T03:22:48Z-
dc.date.available2020-11-17T03:22:48Z-
dc.date.issued2020-06-
dc.identifier.issn0955-7997-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/2476-
dc.description.abstractIn this paper, the torsion problem is analyzed by boundary element method (BEM). After applying a new error estimation technique in the BEM, we can derive the numerical error of BEM. We extend the research of previous literature by the authors Chen and Chen [1], to the real engineering problem. This paper estimates the discretizing error caused by using BEM for solving the torsion problem with inclusions. The main characteristic of this technique is that the exact solution is not known in prior. In the technique, we need to create an auxiliary problem that the government equation, domain shape, and boundary condition type are the same as the given real problem. Besides, it has an analytical solution that satisfies the governing equation. We can derive the suitable number of elements by solving the auxiliary problem. Subsequently, by using the suitable number of elements in the BEM, we can obtain the appropriate solution for the real problem. Finally, several cases in the literature are given to illustrate the validity of the novel approach applied in the BEM to solve the real problem.en_US
dc.language.isoen_USen_US
dc.publisherScienceDirecten_US
dc.relation.ispartofEngineering Analysis with Boundary Elementsen_US
dc.subjectError estimation techniqueen_US
dc.subjectBoundary integral equationen_US
dc.subjectTorsion baren_US
dc.subjectInclusionen_US
dc.subjectAuxiliary problemen_US
dc.titleA new error estimation technique for solving torsion bar problem with inclusion by using BEMen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.enganabound.2020.02.012-
dc.relation.journalvolume115en_US
dc.relation.pages168-211en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

WEB OF SCIENCETM
Citations

1
Last Week
1
Last month
checked on Nov 26, 2021

Page view(s)

322
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback