Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/2482
DC FieldValueLanguage
dc.contributor.authorShiang-Woei Chyuanen_US
dc.contributor.authorYunn-Shiuan Liaoen_US
dc.contributor.authorJeng-Tzong Chenen_US
dc.date.accessioned2020-11-17T03:22:48Z-
dc.date.available2020-11-17T03:22:48Z-
dc.date.issued2004-09-
dc.identifier.issn1361-6641-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/2482-
dc.description.abstractEngineers usually adopt multilayered design for semiconductor and electron devices, and an accurate electrostatic analysis is indispensable in the design stage. For variable design of electron devices, the BEM has become a better method than the domain-type FEM because BEM can provide a complete solution in terms of boundary values only, with substantial saving in modelling effort. Since dual BEM still has some advantages over conventional BEM for singularity arising from a degenerate boundary, the dual BEM accompanied by subregion technology, instead of tedious calculation of Fourier–Bessel transforms for the spatial Green's functions, was used to efficiently simulate the electric effect of diverse ratios of permittivity between arbitrarily multilayered domain and the fringing field around the edge of conductors. Results show that different ratios of permittivity will affect the electric field seriously, and the values of surface charge density on the edge of conductors are much higher than those on the middle part because of fringing effect. In addition, if using the DBEM to model the fringing field around the edge of conductors, the minimum allowable data of dielectric strength for keeping off dielectric breakdown can be obtained very efficiently.en_US
dc.language.isoen_USen_US
dc.publisherIOP Publishingen_US
dc.relation.ispartofSemiconductor Science and Technologyen_US
dc.titleAn efficient technique for solving the arbitrarily multilayered electrostatic problems with singularity arising from a degenerate boundaryen_US
dc.typejournal articleen_US
dc.identifier.doi10.1088/0268-1242/19/9/r02-
dc.relation.journalvolume19en_US
dc.relation.journalissue9en_US
dc.relation.pages47-58en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

WEB OF SCIENCETM
Citations

2
Last Week
0
Last month
0
checked on Jun 19, 2023

Page view(s)

155
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback