Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/2487
DC FieldValueLanguage
dc.contributor.authorKao, J. H.en_US
dc.contributor.authorChen, K. H.en_US
dc.contributor.authorJeng-Tzong Chenen_US
dc.contributor.authorKuo, S. R.en_US
dc.date.accessioned2020-11-17T03:22:49Z-
dc.date.available2020-11-17T03:22:49Z-
dc.date.issued2020-02-
dc.identifier.issn1811-8216-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/2487-
dc.description.abstractIn this paper, we develop the isogeometric analysis of the dual boundary element method (IGA-DBEM) to solve the potential problem with a degenerate boundary. The non-uniform rational B-Spline (NURBS) based functions are employed to interpolate the geometry and physical function. To deal with the rank-deficiency problem due to the degenerate boundary, the hypersingular integral equation is introduced to promote the full rank for the influence matrix in the dual BEM. Finally, three numerical examples are given to verify the accuracy of our proposed method. Both circular and square domains subjected to the Dirichlet boundary condition are considered. The engineering problem containing a degenerate boundary is considered, e.g., a seepage flow problem with a sheet pile. Numerical results of the IGA-DBEM agree well with these of the exact solution and the original dual boundary element method.en_US
dc.language.isoen_USen_US
dc.publisherOXFORD ACADEMICen_US
dc.relation.ispartofJournal of Mechanicsen_US
dc.subjectDual BEMen_US
dc.subjectIsogeometric analysisen_US
dc.subjectNURBSen_US
dc.subjectDegenerate boundaryen_US
dc.subjectLaplace equationen_US
dc.titleIsogeometric Analysis of the Dual Boundary Element Method for the Laplace Problem With a Degenerate Boundaryen_US
dc.typejournal articleen_US
dc.identifier.doi10.1017/jmech.2019.18-
dc.relation.journalvolume36en_US
dc.relation.journalissue1en_US
dc.relation.pages35-46en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

WEB OF SCIENCETM
Citations

1
Last Week
0
Last month
0
checked on Apr 17, 2021

Page view(s)

125
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback