Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/24904
DC 欄位值語言
dc.contributor.authorYang, You-Jieen_US
dc.contributor.authorChih-Min Chaoen_US
dc.contributor.authorChun-Chao Yehen_US
dc.contributor.authorChih-Yu Linen_US
dc.date.accessioned2024-04-12T06:29:00Z-
dc.date.available2024-04-12T06:29:00Z-
dc.date.issued2023-01-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/24904-
dc.description.abstractDriver identification is a key factor in attributing liability for car accident insurance claims and assessing driver competency. Existing driver recognition systems use mechanisms based on identity keys (e.g., car keys and identity cards) or biometric characteristics (e.g., fingerprints, voiceprints, and face recognition). However, identity keys are prone to loss or misappropriation; biometric methods are prone to driver substitution and raise issues pertaining to privacy; and neither approach is applicable to the majority of commercial applications (e.g., hiring delivery drivers and renting out vehicles). This paper presents a novel driver identity recognition system based on the channel state information (CSI) of Wi-Fi signals, which tend to vary with the user, even when performing identical tasks. CSI values corresponding to driver maneuvers (e.g., turning or going straight) are used as inputs for a deep neural network tasked with establishing a driver recognition model. The feasibility of this approach was verified through simulations in the laboratory and with a vehicle, both of which achieved average recognition accuracy of roughly 95%.en_US
dc.language.isoen_USen_US
dc.publisherIEEEen_US
dc.subjectVehiclesen_US
dc.subjectface recognitionen_US
dc.subjectfeature extractionen_US
dc.subjectofdmen_US
dc.subjectBehavioral sciencesen_US
dc.subjectWireless fidelityen_US
dc.subjectAutomobilesen_US
dc.subjectchannel state informationen_US
dc.subjectidentity recognitionen_US
dc.subjectneural networksen_US
dc.titleWFID: Driver Identity Recognition Based on Wi-Fi Signalsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/TVT.2022.3203725-
dc.relation.journalvolume72en_US
dc.relation.journalissue1en_US
dc.relation.pages679-688en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:資訊工程學系
顯示文件簡單紀錄

Page view(s)

143
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋