Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/24905
DC 欄位值語言
dc.contributor.authorFei-Rong Huangen_US
dc.contributor.authorCong-Xaiang Wangen_US
dc.contributor.authorChih-Min Chaoen_US
dc.date.accessioned2024-04-12T06:45:11Z-
dc.date.available2024-04-12T06:45:11Z-
dc.date.issued2020-04-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/24905-
dc.description.abstractIn recent years, traffic congestion has become a global concern. Many researchers work on the development of Intelligent Transportation Systems (ITS) to reduce traffic congestion and improve transportation efficiency. Traffic Information such as vehicle speed, traffic volume, and inter-vehicle spacing are common indicators to determine traffic congestion situation. However, most existing studies only use a single indicator to estimate traffic congestion status. In this paper, we propose the Road-condition-based Congestion Prediction System (RCPS) that uses both traffic volume and vehicle speed to predict traffic congestion. The proposed solution collects real-time road images taken from camera drones to extract traffic volume and vehicle speed on the road. The extracted traffic indicators are then used to predict the congestion level in the future. Using two traffic indicators instead of one, the RCPS achieves high accuracy in congestion level prediction. The RCPS predictions can also been shown on the APP developed for it. It is expected that the road congestion level prediction provided by the RCPS will provide valuable information for drivers to choose the best route.en_US
dc.language.isoen_USen_US
dc.publisherIEEEen_US
dc.titleTraffic Congestion Level Prediction Based on Recurrent Neural Networksen_US
dc.typeconference paperen_US
dc.identifier.doi10.1109/ICAIIC48513.2020.9065278-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypeconference paper-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:資訊工程學系
顯示文件簡單紀錄

Page view(s)

127
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋