Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/24906
標題: Low-Cost Weed Identification System Using Drones
作者: Wei-Che Liang
You-Jei Yang
Chih-Min Chao 
公開日期: 一月-2020
出版社: IEEE
摘要: 
Weeds compete with crops for resources such as light, nutrients, water and space. When mature, weeds can produce thousands to hundreds of thousands of seeds that can survive for a long time and posing a great threat to crops. The best way to avoid weed threats is to remove weeds before they bloom such that the chances of weed seeds falling into the soil can be reduced. Most existing drone-based weeds identification methods use additional equipments to enhance the identification ability. In addition to increasing the cost, such solutions also increase power consumption and load burden of drones. In this paper, we propose a low-cost Weed Identification System (WIS) using RGB images taken by drones as training data and applying Convolutional Neural Networks (CNN) to build the identification model. The result of the WIS can be used as a reference for agriculture researchers and can also be used to inform farmers to take necessary reactions. The WIS identifies weeds with an accuracy of up to 98.8%. Compared to other high-cost methods, the WIS does achieve similar identification accuracy at low cost.
URI: http://scholars.ntou.edu.tw/handle/123456789/24906
DOI: 10.1109/CANDARW.2019.00052
顯示於:資訊工程學系

顯示文件完整紀錄

Page view(s)

104
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋