Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/24922
DC FieldValueLanguage
dc.contributor.authorYu-Chee Tsengen_US
dc.contributor.authorChih-Min Chaoen_US
dc.date.accessioned2024-04-12T08:32:28Z-
dc.date.available2024-04-12T08:32:28Z-
dc.date.issued2002-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/24922-
dc.description.abstractThe use of OVSF codes in WCDMA systems has offered opportunities to provide variable data rates to flexibly support applications with different bandwidth requirements. Two important issues in such an environment are the code placement problem and code replacement problem. The former may have significant impact on code utilization and, thus, code blocking probability, while the latter may affect the code reassignment cost if dynamic code assignment is to be conducted. The general objective is to make the OVSF code tree as compact as possible so as to support more new calls by incurring less blocking probability and less reassignment costs. Earlier studies about these two problems either do not consider the structure of the OVSF code tree or cannot utilize the OVSF codes efficiently. To reduce the call blocking probability and the code reassignment cost, we propose two simple yet efficient strategies that can be adopted by both code placement and code replacement: leftmost and crowded-first. Numerical analyses on call blocking probability and bandwidth utilization of OVSF code trees when code reassignment is supported are provided. Our simulation results show that the crowded-first strategy can significantly reduce, for example, the code blocking probability by 77 percent and the number of reassignments by 81 percent, as opposed to the random strategy when the system is 80 percent fully loaded and the max SF = 256.en_US
dc.language.isoen_USen_US
dc.publisherIEEEen_US
dc.titleCode Placement and Replacement Strategies for Wideband CDMA OVSF Code Tree Managementen_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/TMC.2002.1175542-
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:資訊工程學系
Show simple item record

Page view(s)

222
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback