Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/2493
DC FieldValueLanguage
dc.contributor.authorJia-Wei Leeen_US
dc.contributor.authorJeng-Tzong Chenen_US
dc.contributor.authorShyue-Yuh Leuen_US
dc.contributor.authorShing-Kai Kaoen_US
dc.date.accessioned2020-11-17T03:22:50Z-
dc.date.available2020-11-17T03:22:50Z-
dc.date.issued2014-03-
dc.identifier.issn1619-6937-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/2493-
dc.description.abstractIn this paper, the acoustic scattering problem from a point source to a two-layer prolate spheroid is solved by using the null-field boundary integral equation method (BIEM) in conjunction with degenerate kernels. To fully utilize the spheroidal geometry, the fundamental solutions and the boundary densities are expanded by using the addition theorem and spheroidal harmonics in the prolate spheroidal coordinates, respectively. Based on this approach, the collocation point can be located on the real boundary, and all boundary integrals can be determined analytically. In real applications of a two-layer prolate spheroidal structure, it can be applied to simulate the kidney-stone biomechanical system. Here, we consider the confocal structure to simulate the kidney-stone system since its analytical solution can be analytically derived. The parameter study for providing some references in the clinical medical treatment is also considered. To check the validity of the null-field BIEM, a special case of the acoustic scattering problem of a point source by a rigid scatterer is also done by setting the density of the inner prolate spheroid to infinity. Results of the present method are compared with those obtained using the commercial finite element software ABAQUS.en_US
dc.language.isoen_USen_US
dc.publisherSpringer Verlagen_US
dc.relation.ispartofActa Mechanicaen_US
dc.titleNull-field BIEM for solving a scattering problem from a point source to a two-layer prolate spheroiden_US
dc.typejournal articleen_US
dc.identifier.doi10.1007/s00707-013-0988-x-
dc.relation.journalvolume225en_US
dc.relation.journalissue3en_US
dc.relation.pages873-891en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

WEB OF SCIENCETM
Citations

5
Last Week
0
Last month
0
checked on Jun 19, 2023

Page view(s)

163
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback