Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/2495
DC 欄位值語言
dc.contributor.authorJia-Wei Leeen_US
dc.contributor.authorHong-Ki Hongen_US
dc.contributor.authorJeng-Tzong Chenen_US
dc.date.accessioned2020-11-17T03:22:50Z-
dc.date.available2020-11-17T03:22:50Z-
dc.date.issued2015-05-
dc.identifier.issn0955-7997-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/2495-
dc.description.abstractTheory of complex variables is a very powerful mathematical technique for solving two-dimensional problems satisfying the Laplace equation. On the basis of the conventional Cauchy integral formula, the conventional complex variable boundary integral equation (CVBIE) can be constructed. The limitation is that the conventional CVBIE is only suitable for holomorphic (analytic) functions, however. To solve for a complex-valued harmonic-function pair without satisfying the Cauchy–Riemann equations, we propose a new boundary element method (BEM) based on the general Cauchy integral formula. The general Cauchy integral formula is derived by using the Borel–Pompeiu formula. The difference between the present CVBIE and the conventional CVBIE is that the former one has two boundary integrals instead of only one boundary integral in the latter one. When the unknown field is a holomorphic function, the present CVBIE can be reduced to the conventional CVBIE. Therefore, the conventional Cauchy integral formula can be viewed as a special case applicable to a holomorphic function. To examine the present CVBIE, we consider several torsion problems in this paper since the two shear stress fields satisfy the Laplace equation but do not satisfy the Cauchy–Riemann equations. Using the present CVBIE, we can directly solve the stress fields and the torsional rigidity simultaneously. Finally, several examples, including a circular bar containing an eccentric inclusion (with dissimilar materials) or hole, a circular bar, elliptical bar, equilateral triangular bar, rectangular bar, asteroid bar and circular bar with keyway, were demonstrated to check the validity of the present method.en_US
dc.language.isoen_USen_US
dc.publisherScienceDirecten_US
dc.relation.ispartofEngineering Analysis with Boundary Elementsen_US
dc.subjectCauchy integral formulaen_US
dc.subjectComplex variable boundary integral equationen_US
dc.subjectHolomorphic functionen_US
dc.subjectComplex-valued harmonic functionen_US
dc.subjectStress fieldsen_US
dc.subjectTorsional rigidityen_US
dc.titleGeneralized complex variable boundary integral equation for stress fields and torsional rigidity in torsion problemsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.enganabound.2015.01.003-
dc.relation.journalvolume54en_US
dc.relation.pages86-96en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:河海工程學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

2
checked on 2021/4/7

Page view(s)

183
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋