Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/2496
Title: Applications of the Clifford algebra valued boundary element method to electromagnetic scattering problems
Authors: Jia-Wei Lee
Li-Wei Liu
Hong-Ki Hong
Jeng-Tzong Chen 
Keywords: Clifford algebra;Clifford algebra valued boundary integral equation;k-Dirac equation;Cauchy-type kernels;Dirac matrices;Electromagnetic scattering
Issue Date: Oct-2016
Publisher: ScienceDirect
Journal Volume: 71
Start page/Pages: 140-150
Source: Engineering Analysis with Boundary Elements 
Abstract: 
Electromagnetic problems governed by Maxwell's equations are solved by using a Clifford algebra valued boundary element method (BEM). The well-known Maxwell's equations consist of eight pieces of scalar partial differential equations of the first order. They can be rewritten in terms of the language of Clifford analysis as a nonhomogeneous k-Dirac equation with a Clifford algebra valued function. It includes three-component electric fields and three-component magnetic fields. Furthermore, we derive Clifford algebra valued boundary integral equations (BIEs) with Cauchy-type kernels and then develop a Clifford algebra valued BEM to solve electromagnetic scattering problems. To deal with the problem of the Cauchy principal value, we use a simple Clifford algebra valued k-monogenic function to exactly evaluate the Cauchy principal value. Free of calculating the solid angle for the boundary point is gained. The remaining boundary integral is easily calculated by using a numerical quadrature except the part of Cauchy principal value. This idea can also preserve the flexibility of numerical method, hence it is suitable for any geometry shape. In the numerical implementation, we introduce an oriented surface element instead of the unit outward normal vector and the ordinary surface element. In addition, we adopt the Dirac matrices to express the bases of Clifford algebra . We also use an orthogonal matrix to transform global boundary densities into local boundary densities for satisfying boundary condition straightforward. Finally, two electromagnetic scattering problems with a perfect spherical conductor and a prolate spheroidal conductor are both considered to examine the validity of the Clifford algebra valued BEM with Cauchy-type kernels.
URI: http://scholars.ntou.edu.tw/handle/123456789/2496
ISSN: 0955-7997
DOI: 10.1016/j.enganabound.2016.07.007
Appears in Collections:河海工程學系

Show full item record

WEB OF SCIENCETM
Citations

3
Last Week
0
Last month
0
checked on Apr 9, 2021

Page view(s)

211
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback