Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/2496
DC 欄位值語言
dc.contributor.authorJia-Wei Leeen_US
dc.contributor.authorLi-Wei Liuen_US
dc.contributor.authorHong-Ki Hongen_US
dc.contributor.authorJeng-Tzong Chenen_US
dc.date.accessioned2020-11-17T03:22:50Z-
dc.date.available2020-11-17T03:22:50Z-
dc.date.issued2016-10-
dc.identifier.issn0955-7997-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/2496-
dc.description.abstractElectromagnetic problems governed by Maxwell's equations are solved by using a Clifford algebra valued boundary element method (BEM). The well-known Maxwell's equations consist of eight pieces of scalar partial differential equations of the first order. They can be rewritten in terms of the language of Clifford analysis as a nonhomogeneous k-Dirac equation with a Clifford algebra valued function. It includes three-component electric fields and three-component magnetic fields. Furthermore, we derive Clifford algebra valued boundary integral equations (BIEs) with Cauchy-type kernels and then develop a Clifford algebra valued BEM to solve electromagnetic scattering problems. To deal with the problem of the Cauchy principal value, we use a simple Clifford algebra valued k-monogenic function to exactly evaluate the Cauchy principal value. Free of calculating the solid angle for the boundary point is gained. The remaining boundary integral is easily calculated by using a numerical quadrature except the part of Cauchy principal value. This idea can also preserve the flexibility of numerical method, hence it is suitable for any geometry shape. In the numerical implementation, we introduce an oriented surface element instead of the unit outward normal vector and the ordinary surface element. In addition, we adopt the Dirac matrices to express the bases of Clifford algebra . We also use an orthogonal matrix to transform global boundary densities into local boundary densities for satisfying boundary condition straightforward. Finally, two electromagnetic scattering problems with a perfect spherical conductor and a prolate spheroidal conductor are both considered to examine the validity of the Clifford algebra valued BEM with Cauchy-type kernels.en_US
dc.language.isoen_USen_US
dc.publisherScienceDirecten_US
dc.relation.ispartofEngineering Analysis with Boundary Elementsen_US
dc.subjectClifford algebraen_US
dc.subjectClifford algebra valued boundary integral equationen_US
dc.subjectk-Dirac equationen_US
dc.subjectCauchy-type kernelsen_US
dc.subjectDirac matricesen_US
dc.subjectElectromagnetic scatteringen_US
dc.titleApplications of the Clifford algebra valued boundary element method to electromagnetic scattering problemsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.enganabound.2016.07.007-
dc.relation.journalvolume71en_US
dc.relation.pages140-150en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:河海工程學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

3
上周
0
上個月
0
checked on 2021/4/9

Page view(s)

211
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋