Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/2505
DC FieldValueLanguage
dc.contributor.authorLee, W. M.en_US
dc.contributor.authorJeng-Tzong Chenen_US
dc.date.accessioned2020-11-17T03:22:51Z-
dc.date.available2020-11-17T03:22:51Z-
dc.date.issued2011-01-
dc.identifier.issn1528-9036-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/2505-
dc.description.abstractIn this paper, natural frequencies and natural modes of a circular plate with multiple circular holes are theoretically derived and numerically determined by using the indirect boundary integral formulation, the addition theorem, and the complex Fourier series. Owing to the addition theorem, all kernel functions are expanded into degenerate forms and further expressed in the same polar coordinates centered at one circle where the boundary conditions are specified. Not only the computation of the principal value is avoided but also the calculation of higher-order derivatives can be easily determined. By matching boundary conditions, a coupled infinite system of linear algebraic equations is derived as an analytical model for the free vibration of a circular plate with multiple circular holes. The direct-searching approach is utilized in the truncated finite system to determine the natural frequency through singular value decomposition. After determining the unknown Fourier coefficients, the corresponding mode shapes are obtained by using the indirect boundary integral formulations. Some numerical eigensolutions are presented and then utilized to explain some physical phenomenon such as the beating and the dynamic stress concentration. Good accuracy and fast rate of convergence are the main features of the present method, thanks to the analytical approach.en_US
dc.language.isoen_USen_US
dc.publisherThe American Society of Mechanical Engineersen_US
dc.relation.ispartofJournal of Applied Mechanicsen_US
dc.subjectboundary integral equationsen_US
dc.subjectplates (structures)en_US
dc.subjectvibrationsen_US
dc.titleFree Vibration Analysis of a Circular Plate With Multiple Circular Holes by Using Indirect BIEM and Addition Theoremen_US
dc.typejournal articleen_US
dc.identifier.doi10.1115/1.4001993-
dc.relation.journalvolume78en_US
dc.relation.journalissue1en_US
dc.relation.pages011015en_US
item.fulltextno fulltext-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypejournal article-
item.languageiso639-1en_US-
item.grantfulltextnone-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

Page view(s)

149
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback