Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25201
DC FieldValueLanguage
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorChang, Chih-Wenen_US
dc.date.accessioned2024-11-01T06:26:05Z-
dc.date.available2024-11-01T06:26:05Z-
dc.date.issued2024/2/1-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25201-
dc.description.abstractIn the paper, we iteratively solve a scalar nonlinear equation f(x)=0, where f is an element of C(I,R), x is an element of I subset of R, and I includes at least one real root r. Three novel two-step iterative schemes equipped with memory updating methods are developed; they are variants of the fixed-point Newton method. A triple data interpolation is carried out by the two-degree Newton polynomial, which is used to update the values of f '(r) and f ''(r). The relaxation factor in the supplementary variable is accelerated by imposing an extra condition on the interpolant. The new memory method (NMM) can raise the efficiency index (E.I.) significantly. We apply the NMM to five existing fourth-order iterative methods, and the computed order of convergence (COC) and E.I. are evaluated by numerical tests. When the relaxation factor acceleration technique is combined with the modified Dzunic's memory method, the value of E.I. is much larger than that predicted by the paper [Kung, H.T.; Traub, J.F. J. Assoc. Comput. Machinery 1974, 21]. for the iterative method without memory.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofMATHEMATICSen_US
dc.subjectnonlinear equationen_US
dc.subjecttwo-step iterative schemesen_US
dc.subjectnew memory updating methoden_US
dc.subjectrelaxation factoren_US
dc.subjectsupplementary variableen_US
dc.titleNew Memory-Updating Methods in Two-Step Newton's Variants for Solving Nonlinear Equations with High Efficiency Indexen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/math12040581-
dc.identifier.isiWOS:001169692100001-
dc.relation.journalvolume12en_US
dc.relation.journalissue4en_US
dc.identifier.eissn2227-7390-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:海洋中心
Show simple item record

Page view(s)

415
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback