Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25205
DC FieldValueLanguage
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorKuo, Chung-Lunen_US
dc.contributor.authorChang, Chih-Wenen_US
dc.date.accessioned2024-11-01T06:26:06Z-
dc.date.available2024-11-01T06:26:06Z-
dc.date.issued2024/2/1-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25205-
dc.description.abstractIn the paper, we develop three new methods for estimating unknown initial temperature in a backward time-fractional diffusion problem, which is transformed to a space-dependent inverse source problem for a new variable in the first method. Then, the initial temperature can be recovered by solving a second-order boundary value problem. The boundary functions and a unique zero element constitute a group symmetry. We derive energetic boundary functions in the symmetry group as the bases to retrieve the source term as an unknown function of space and time. In the second method, the solution bases are energetic boundary functions, and then by collocating the governing equation we obtain the expansion coefficients for retrieving the entire solution and initial temperature. For the first two methods, boundary fluxes are over-specified to retrieve the initial condition. In the third method, we give two boundary conditions and a final time temperature to construct the bases in another symmetry group; the governing equation is collocated to a linear system to obtain the whole solution (initial temperature involved). These three methods are assessed and compared by numerical experiments.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofSYMMETRY-BASELen_US
dc.subjecttime-fractional diffusion equationen_US
dc.subjectinverse source problemen_US
dc.subjectgroup symmetry methoden_US
dc.subjectbackward diffusion problemen_US
dc.subjectboundary functionsen_US
dc.subjectenergetic boundary functionsen_US
dc.titleA Symmetry of Boundary Functions Method for Solving the Backward Time-Fractional Diffusion Problemsen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/sym16020191-
dc.identifier.isiWOS:001172481900001-
dc.relation.journalvolume16en_US
dc.relation.journalissue2en_US
dc.identifier.eissn2073-8994-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:海洋中心
Show simple item record

Page view(s)

73
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback