Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25212
DC 欄位值語言
dc.contributor.authorLe, Thi-Ngoc-Hanhen_US
dc.contributor.authorLee, Tong-Yeeen_US
dc.contributor.authorLin, Shih-Syunen_US
dc.contributor.authorDong, Weimingen_US
dc.date.accessioned2024-11-01T06:26:07Z-
dc.date.available2024-11-01T06:26:07Z-
dc.date.issued2024/2/15-
dc.identifier.issn1380-7501-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25212-
dc.description.abstractWe introduce a deep learning-driven framework for creating an adaptably applicable importance map (A2R-Map) that can be integrated with existing image and video retargeting operators. A conventional retargeting algorithm uses a heuristic approach to seek an off-the-self algorithm used into their retargeting system. The extracted importance map of the image does not match the characteristics of the input image; therefore, it affects the retargeting results and limits the performance of the retargeting method. Our designed framework attempts to minimize the artifacts/distortions caused by inappropriate energy, e.g., the shrunk phenomenon in warping-based results and carving-through-object distortion in the seam carving-based approach. Our proposed framework focuses on capturing sensitive distortion regions and activating their energy to solve this challenge. We verify the effectiveness of our proposed scheme by plugging it in three typical retargeting methods: seam carving-based, warping-based for image, and video retargeting. Extensive experiments and evaluations are conducted on two widely used databases. On the one hand, A2R-Map significantly reduces the time of importance map generation in retargeting systems to similar to 9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 9$$\end{document} times compared to the baseline saliency map. On the other hand, our A2R-Map achieves improvement over the baseline methods with an average of 11% and 9% in terms of image and video quality, respectively. The experimental results and evaluations demonstrate that our strategy for A2R-Map substantially outperforms the previous works and significantly boosts the visual quality of video/image retargeting.en_US
dc.language.isoEnglishen_US
dc.publisherSPRINGERen_US
dc.relation.ispartofMULTIMEDIA TOOLS AND APPLICATIONSen_US
dc.subjectRetargetingen_US
dc.subjectA2R-Mapen_US
dc.subjectSeam carvingen_US
dc.subjectWarpingen_US
dc.titleDeep learning-based importance map for content-aware media retargetingen_US
dc.typejournal articleen_US
dc.identifier.doi10.1007/s11042-024-18389-4-
dc.identifier.isiWOS:001162156800023-
dc.identifier.eissn1573-7721-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0002-8360-5819-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:資訊工程學系
顯示文件簡單紀錄

Page view(s)

100
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋